ok
Direktori : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/__pycache__/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/__pycache__/scimath.cpython-311.pyc |
� �܋f�: � � � d Z ddlmc mZ ddlmc mZ ddlmZm Z ddl mZ ddlm Z g d�Z ej d� � Zd� Zd � Zd � Zd� Zd� Z ee� � d � � � Z ee� � d� � � Z ee� � d� � � Zd� Z ee� � d� � � Z ee� � d� � � Zd� Z ee� � d� � � Z ee� � d� � � Z ee� � d� � � Z ee� � d� � � ZdS )a� Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the input data-type in certain domains of the input. For example, for functions like `log` with branch cuts, the versions in this module provide the mathematically valid answers in the complex plane:: >>> import math >>> np.emath.log(-math.exp(1)) == (1+1j*math.pi) True Similarly, `sqrt`, other base logarithms, `power` and trig functions are correctly handled. See their respective docstrings for specific examples. Functions --------- .. autosummary:: :toctree: generated/ sqrt log log2 logn log10 power arccos arcsin arctanh � N)�asarray�any)�array_function_dispatch)�isreal) �sqrt�log�log2�logn�log10�power�arccos�arcsin�arctanhg @c �6 � t | j j t j t j t j t j t j t j f� � r| � t j � � S | � t j � � S )a_ Convert its input `arr` to a complex array. The input is returned as a complex array of the smallest type that will fit the original data: types like single, byte, short, etc. become csingle, while others become cdouble. A copy of the input is always made. Parameters ---------- arr : array Returns ------- array An array with the same input data as the input but in complex form. Examples -------- First, consider an input of type short: >>> a = np.array([1,2,3],np.short) >>> ac = np.lib.scimath._tocomplex(a); ac array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> ac.dtype dtype('complex64') If the input is of type double, the output is correspondingly of the complex double type as well: >>> b = np.array([1,2,3],np.double) >>> bc = np.lib.scimath._tocomplex(b); bc array([1.+0.j, 2.+0.j, 3.+0.j]) >>> bc.dtype dtype('complex128') Note that even if the input was complex to begin with, a copy is still made, since the astype() method always copies: >>> c = np.array([1,2,3],np.csingle) >>> cc = np.lib.scimath._tocomplex(c); cc array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> c *= 2; c array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64) >>> cc array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) )� issubclass�dtype�type�nt�single�byte�short�ubyte�ushort�csingle�astype�cdouble)�arrs �H/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/scimath.py� _tocomplexr 1 sc � �p �#�)�.�2�9�b�g�r�x���#%�9�b�j�#:� ;� ;� &��z�z�"�*�%�%�%��z�z�"�*�%�%�%� c � � t | � � } t t | � � | dk z � � rt | � � } | S )a� Convert `x` to complex if it has real, negative components. Otherwise, output is just the array version of the input (via asarray). Parameters ---------- x : array_like Returns ------- array Examples -------- >>> np.lib.scimath._fix_real_lt_zero([1,2]) array([1, 2]) >>> np.lib.scimath._fix_real_lt_zero([-1,2]) array([-1.+0.j, 2.+0.j]) r )r r r r ��xs r �_fix_real_lt_zeror$ p s>