ok
Direktori : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/random/tests/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/random/tests/test_smoke.py |
import pickle from functools import partial import numpy as np import pytest from numpy.testing import assert_equal, assert_, assert_array_equal from numpy.random import (Generator, MT19937, PCG64, PCG64DXSM, Philox, SFC64) @pytest.fixture(scope='module', params=(np.bool_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)) def dtype(request): return request.param def params_0(f): val = f() assert_(np.isscalar(val)) val = f(10) assert_(val.shape == (10,)) val = f((10, 10)) assert_(val.shape == (10, 10)) val = f((10, 10, 10)) assert_(val.shape == (10, 10, 10)) val = f(size=(5, 5)) assert_(val.shape == (5, 5)) def params_1(f, bounded=False): a = 5.0 b = np.arange(2.0, 12.0) c = np.arange(2.0, 102.0).reshape((10, 10)) d = np.arange(2.0, 1002.0).reshape((10, 10, 10)) e = np.array([2.0, 3.0]) g = np.arange(2.0, 12.0).reshape((1, 10, 1)) if bounded: a = 0.5 b = b / (1.5 * b.max()) c = c / (1.5 * c.max()) d = d / (1.5 * d.max()) e = e / (1.5 * e.max()) g = g / (1.5 * g.max()) # Scalar f(a) # Scalar - size f(a, size=(10, 10)) # 1d f(b) # 2d f(c) # 3d f(d) # 1d size f(b, size=10) # 2d - size - broadcast f(e, size=(10, 2)) # 3d - size f(g, size=(10, 10, 10)) def comp_state(state1, state2): identical = True if isinstance(state1, dict): for key in state1: identical &= comp_state(state1[key], state2[key]) elif type(state1) != type(state2): identical &= type(state1) == type(state2) else: if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance( state2, (list, tuple, np.ndarray))): for s1, s2 in zip(state1, state2): identical &= comp_state(s1, s2) else: identical &= state1 == state2 return identical def warmup(rg, n=None): if n is None: n = 11 + np.random.randint(0, 20) rg.standard_normal(n) rg.standard_normal(n) rg.standard_normal(n, dtype=np.float32) rg.standard_normal(n, dtype=np.float32) rg.integers(0, 2 ** 24, n, dtype=np.uint64) rg.integers(0, 2 ** 48, n, dtype=np.uint64) rg.standard_gamma(11.0, n) rg.standard_gamma(11.0, n, dtype=np.float32) rg.random(n, dtype=np.float64) rg.random(n, dtype=np.float32) class RNG: @classmethod def setup_class(cls): # Overridden in test classes. Place holder to silence IDE noise cls.bit_generator = PCG64 cls.advance = None cls.seed = [12345] cls.rg = Generator(cls.bit_generator(*cls.seed)) cls.initial_state = cls.rg.bit_generator.state cls.seed_vector_bits = 64 cls._extra_setup() @classmethod def _extra_setup(cls): cls.vec_1d = np.arange(2.0, 102.0) cls.vec_2d = np.arange(2.0, 102.0)[None, :] cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100)) cls.seed_error = TypeError def _reset_state(self): self.rg.bit_generator.state = self.initial_state def test_init(self): rg = Generator(self.bit_generator()) state = rg.bit_generator.state rg.standard_normal(1) rg.standard_normal(1) rg.bit_generator.state = state new_state = rg.bit_generator.state assert_(comp_state(state, new_state)) def test_advance(self): state = self.rg.bit_generator.state if hasattr(self.rg.bit_generator, 'advance'): self.rg.bit_generator.advance(self.advance) assert_(not comp_state(state, self.rg.bit_generator.state)) else: bitgen_name = self.rg.bit_generator.__class__.__name__ pytest.skip(f'Advance is not supported by {bitgen_name}') def test_jump(self): state = self.rg.bit_generator.state if hasattr(self.rg.bit_generator, 'jumped'): bit_gen2 = self.rg.bit_generator.jumped() jumped_state = bit_gen2.state assert_(not comp_state(state, jumped_state)) self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17) self.rg.bit_generator.state = state bit_gen3 = self.rg.bit_generator.jumped() rejumped_state = bit_gen3.state assert_(comp_state(jumped_state, rejumped_state)) else: bitgen_name = self.rg.bit_generator.__class__.__name__ if bitgen_name not in ('SFC64',): raise AttributeError(f'no "jumped" in {bitgen_name}') pytest.skip(f'Jump is not supported by {bitgen_name}') def test_uniform(self): r = self.rg.uniform(-1.0, 0.0, size=10) assert_(len(r) == 10) assert_((r > -1).all()) assert_((r <= 0).all()) def test_uniform_array(self): r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10) assert_(len(r) == 10) assert_((r > -1).all()) assert_((r <= 0).all()) r = self.rg.uniform(np.array([-1.0] * 10), np.array([0.0] * 10), size=10) assert_(len(r) == 10) assert_((r > -1).all()) assert_((r <= 0).all()) r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10) assert_(len(r) == 10) assert_((r > -1).all()) assert_((r <= 0).all()) def test_random(self): assert_(len(self.rg.random(10)) == 10) params_0(self.rg.random) def test_standard_normal_zig(self): assert_(len(self.rg.standard_normal(10)) == 10) def test_standard_normal(self): assert_(len(self.rg.standard_normal(10)) == 10) params_0(self.rg.standard_normal) def test_standard_gamma(self): assert_(len(self.rg.standard_gamma(10, 10)) == 10) assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10) params_1(self.rg.standard_gamma) def test_standard_exponential(self): assert_(len(self.rg.standard_exponential(10)) == 10) params_0(self.rg.standard_exponential) def test_standard_exponential_float(self): randoms = self.rg.standard_exponential(10, dtype='float32') assert_(len(randoms) == 10) assert randoms.dtype == np.float32 params_0(partial(self.rg.standard_exponential, dtype='float32')) def test_standard_exponential_float_log(self): randoms = self.rg.standard_exponential(10, dtype='float32', method='inv') assert_(len(randoms) == 10) assert randoms.dtype == np.float32 params_0(partial(self.rg.standard_exponential, dtype='float32', method='inv')) def test_standard_cauchy(self): assert_(len(self.rg.standard_cauchy(10)) == 10) params_0(self.rg.standard_cauchy) def test_standard_t(self): assert_(len(self.rg.standard_t(10, 10)) == 10) params_1(self.rg.standard_t) def test_binomial(self): assert_(self.rg.binomial(10, .5) >= 0) assert_(self.rg.binomial(1000, .5) >= 0) def test_reset_state(self): state = self.rg.bit_generator.state int_1 = self.rg.integers(2**31) self.rg.bit_generator.state = state int_2 = self.rg.integers(2**31) assert_(int_1 == int_2) def test_entropy_init(self): rg = Generator(self.bit_generator()) rg2 = Generator(self.bit_generator()) assert_(not comp_state(rg.bit_generator.state, rg2.bit_generator.state)) def test_seed(self): rg = Generator(self.bit_generator(*self.seed)) rg2 = Generator(self.bit_generator(*self.seed)) rg.random() rg2.random() assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) def test_reset_state_gauss(self): rg = Generator(self.bit_generator(*self.seed)) rg.standard_normal() state = rg.bit_generator.state n1 = rg.standard_normal(size=10) rg2 = Generator(self.bit_generator()) rg2.bit_generator.state = state n2 = rg2.standard_normal(size=10) assert_array_equal(n1, n2) def test_reset_state_uint32(self): rg = Generator(self.bit_generator(*self.seed)) rg.integers(0, 2 ** 24, 120, dtype=np.uint32) state = rg.bit_generator.state n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32) rg2 = Generator(self.bit_generator()) rg2.bit_generator.state = state n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32) assert_array_equal(n1, n2) def test_reset_state_float(self): rg = Generator(self.bit_generator(*self.seed)) rg.random(dtype='float32') state = rg.bit_generator.state n1 = rg.random(size=10, dtype='float32') rg2 = Generator(self.bit_generator()) rg2.bit_generator.state = state n2 = rg2.random(size=10, dtype='float32') assert_((n1 == n2).all()) def test_shuffle(self): original = np.arange(200, 0, -1) permuted = self.rg.permutation(original) assert_((original != permuted).any()) def test_permutation(self): original = np.arange(200, 0, -1) permuted = self.rg.permutation(original) assert_((original != permuted).any()) def test_beta(self): vals = self.rg.beta(2.0, 2.0, 10) assert_(len(vals) == 10) vals = self.rg.beta(np.array([2.0] * 10), 2.0) assert_(len(vals) == 10) vals = self.rg.beta(2.0, np.array([2.0] * 10)) assert_(len(vals) == 10) vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10)) assert_(len(vals) == 10) vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10)) assert_(vals.shape == (10, 10)) def test_bytes(self): vals = self.rg.bytes(10) assert_(len(vals) == 10) def test_chisquare(self): vals = self.rg.chisquare(2.0, 10) assert_(len(vals) == 10) params_1(self.rg.chisquare) def test_exponential(self): vals = self.rg.exponential(2.0, 10) assert_(len(vals) == 10) params_1(self.rg.exponential) def test_f(self): vals = self.rg.f(3, 1000, 10) assert_(len(vals) == 10) def test_gamma(self): vals = self.rg.gamma(3, 2, 10) assert_(len(vals) == 10) def test_geometric(self): vals = self.rg.geometric(0.5, 10) assert_(len(vals) == 10) params_1(self.rg.exponential, bounded=True) def test_gumbel(self): vals = self.rg.gumbel(2.0, 2.0, 10) assert_(len(vals) == 10) def test_laplace(self): vals = self.rg.laplace(2.0, 2.0, 10) assert_(len(vals) == 10) def test_logitic(self): vals = self.rg.logistic(2.0, 2.0, 10) assert_(len(vals) == 10) def test_logseries(self): vals = self.rg.logseries(0.5, 10) assert_(len(vals) == 10) def test_negative_binomial(self): vals = self.rg.negative_binomial(10, 0.2, 10) assert_(len(vals) == 10) def test_noncentral_chisquare(self): vals = self.rg.noncentral_chisquare(10, 2, 10) assert_(len(vals) == 10) def test_noncentral_f(self): vals = self.rg.noncentral_f(3, 1000, 2, 10) assert_(len(vals) == 10) vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2) assert_(len(vals) == 10) vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2) assert_(len(vals) == 10) vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10)) assert_(len(vals) == 10) def test_normal(self): vals = self.rg.normal(10, 0.2, 10) assert_(len(vals) == 10) def test_pareto(self): vals = self.rg.pareto(3.0, 10) assert_(len(vals) == 10) def test_poisson(self): vals = self.rg.poisson(10, 10) assert_(len(vals) == 10) vals = self.rg.poisson(np.array([10] * 10)) assert_(len(vals) == 10) params_1(self.rg.poisson) def test_power(self): vals = self.rg.power(0.2, 10) assert_(len(vals) == 10) def test_integers(self): vals = self.rg.integers(10, 20, 10) assert_(len(vals) == 10) def test_rayleigh(self): vals = self.rg.rayleigh(0.2, 10) assert_(len(vals) == 10) params_1(self.rg.rayleigh, bounded=True) def test_vonmises(self): vals = self.rg.vonmises(10, 0.2, 10) assert_(len(vals) == 10) def test_wald(self): vals = self.rg.wald(1.0, 1.0, 10) assert_(len(vals) == 10) def test_weibull(self): vals = self.rg.weibull(1.0, 10) assert_(len(vals) == 10) def test_zipf(self): vals = self.rg.zipf(10, 10) assert_(len(vals) == 10) vals = self.rg.zipf(self.vec_1d) assert_(len(vals) == 100) vals = self.rg.zipf(self.vec_2d) assert_(vals.shape == (1, 100)) vals = self.rg.zipf(self.mat) assert_(vals.shape == (100, 100)) def test_hypergeometric(self): vals = self.rg.hypergeometric(25, 25, 20) assert_(np.isscalar(vals)) vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20) assert_(vals.shape == (10,)) def test_triangular(self): vals = self.rg.triangular(-5, 0, 5) assert_(np.isscalar(vals)) vals = self.rg.triangular(-5, np.array([0] * 10), 5) assert_(vals.shape == (10,)) def test_multivariate_normal(self): mean = [0, 0] cov = [[1, 0], [0, 100]] # diagonal covariance x = self.rg.multivariate_normal(mean, cov, 5000) assert_(x.shape == (5000, 2)) x_zig = self.rg.multivariate_normal(mean, cov, 5000) assert_(x.shape == (5000, 2)) x_inv = self.rg.multivariate_normal(mean, cov, 5000) assert_(x.shape == (5000, 2)) assert_((x_zig != x_inv).any()) def test_multinomial(self): vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3]) assert_(vals.shape == (2,)) vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10) assert_(vals.shape == (10, 2)) def test_dirichlet(self): s = self.rg.dirichlet((10, 5, 3), 20) assert_(s.shape == (20, 3)) def test_pickle(self): pick = pickle.dumps(self.rg) unpick = pickle.loads(pick) assert_((type(self.rg) == type(unpick))) assert_(comp_state(self.rg.bit_generator.state, unpick.bit_generator.state)) pick = pickle.dumps(self.rg) unpick = pickle.loads(pick) assert_((type(self.rg) == type(unpick))) assert_(comp_state(self.rg.bit_generator.state, unpick.bit_generator.state)) def test_seed_array(self): if self.seed_vector_bits is None: bitgen_name = self.bit_generator.__name__ pytest.skip(f'Vector seeding is not supported by {bitgen_name}') if self.seed_vector_bits == 32: dtype = np.uint32 else: dtype = np.uint64 seed = np.array([1], dtype=dtype) bg = self.bit_generator(seed) state1 = bg.state bg = self.bit_generator(1) state2 = bg.state assert_(comp_state(state1, state2)) seed = np.arange(4, dtype=dtype) bg = self.bit_generator(seed) state1 = bg.state bg = self.bit_generator(seed[0]) state2 = bg.state assert_(not comp_state(state1, state2)) seed = np.arange(1500, dtype=dtype) bg = self.bit_generator(seed) state1 = bg.state bg = self.bit_generator(seed[0]) state2 = bg.state assert_(not comp_state(state1, state2)) seed = 2 ** np.mod(np.arange(1500, dtype=dtype), self.seed_vector_bits - 1) + 1 bg = self.bit_generator(seed) state1 = bg.state bg = self.bit_generator(seed[0]) state2 = bg.state assert_(not comp_state(state1, state2)) def test_uniform_float(self): rg = Generator(self.bit_generator(12345)) warmup(rg) state = rg.bit_generator.state r1 = rg.random(11, dtype=np.float32) rg2 = Generator(self.bit_generator()) warmup(rg2) rg2.bit_generator.state = state r2 = rg2.random(11, dtype=np.float32) assert_array_equal(r1, r2) assert_equal(r1.dtype, np.float32) assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) def test_gamma_floats(self): rg = Generator(self.bit_generator()) warmup(rg) state = rg.bit_generator.state r1 = rg.standard_gamma(4.0, 11, dtype=np.float32) rg2 = Generator(self.bit_generator()) warmup(rg2) rg2.bit_generator.state = state r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32) assert_array_equal(r1, r2) assert_equal(r1.dtype, np.float32) assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) def test_normal_floats(self): rg = Generator(self.bit_generator()) warmup(rg) state = rg.bit_generator.state r1 = rg.standard_normal(11, dtype=np.float32) rg2 = Generator(self.bit_generator()) warmup(rg2) rg2.bit_generator.state = state r2 = rg2.standard_normal(11, dtype=np.float32) assert_array_equal(r1, r2) assert_equal(r1.dtype, np.float32) assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) def test_normal_zig_floats(self): rg = Generator(self.bit_generator()) warmup(rg) state = rg.bit_generator.state r1 = rg.standard_normal(11, dtype=np.float32) rg2 = Generator(self.bit_generator()) warmup(rg2) rg2.bit_generator.state = state r2 = rg2.standard_normal(11, dtype=np.float32) assert_array_equal(r1, r2) assert_equal(r1.dtype, np.float32) assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) def test_output_fill(self): rg = self.rg state = rg.bit_generator.state size = (31, 7, 97) existing = np.empty(size) rg.bit_generator.state = state rg.standard_normal(out=existing) rg.bit_generator.state = state direct = rg.standard_normal(size=size) assert_equal(direct, existing) sized = np.empty(size) rg.bit_generator.state = state rg.standard_normal(out=sized, size=sized.shape) existing = np.empty(size, dtype=np.float32) rg.bit_generator.state = state rg.standard_normal(out=existing, dtype=np.float32) rg.bit_generator.state = state direct = rg.standard_normal(size=size, dtype=np.float32) assert_equal(direct, existing) def test_output_filling_uniform(self): rg = self.rg state = rg.bit_generator.state size = (31, 7, 97) existing = np.empty(size) rg.bit_generator.state = state rg.random(out=existing) rg.bit_generator.state = state direct = rg.random(size=size) assert_equal(direct, existing) existing = np.empty(size, dtype=np.float32) rg.bit_generator.state = state rg.random(out=existing, dtype=np.float32) rg.bit_generator.state = state direct = rg.random(size=size, dtype=np.float32) assert_equal(direct, existing) def test_output_filling_exponential(self): rg = self.rg state = rg.bit_generator.state size = (31, 7, 97) existing = np.empty(size) rg.bit_generator.state = state rg.standard_exponential(out=existing) rg.bit_generator.state = state direct = rg.standard_exponential(size=size) assert_equal(direct, existing) existing = np.empty(size, dtype=np.float32) rg.bit_generator.state = state rg.standard_exponential(out=existing, dtype=np.float32) rg.bit_generator.state = state direct = rg.standard_exponential(size=size, dtype=np.float32) assert_equal(direct, existing) def test_output_filling_gamma(self): rg = self.rg state = rg.bit_generator.state size = (31, 7, 97) existing = np.zeros(size) rg.bit_generator.state = state rg.standard_gamma(1.0, out=existing) rg.bit_generator.state = state direct = rg.standard_gamma(1.0, size=size) assert_equal(direct, existing) existing = np.zeros(size, dtype=np.float32) rg.bit_generator.state = state rg.standard_gamma(1.0, out=existing, dtype=np.float32) rg.bit_generator.state = state direct = rg.standard_gamma(1.0, size=size, dtype=np.float32) assert_equal(direct, existing) def test_output_filling_gamma_broadcast(self): rg = self.rg state = rg.bit_generator.state size = (31, 7, 97) mu = np.arange(97.0) + 1.0 existing = np.zeros(size) rg.bit_generator.state = state rg.standard_gamma(mu, out=existing) rg.bit_generator.state = state direct = rg.standard_gamma(mu, size=size) assert_equal(direct, existing) existing = np.zeros(size, dtype=np.float32) rg.bit_generator.state = state rg.standard_gamma(mu, out=existing, dtype=np.float32) rg.bit_generator.state = state direct = rg.standard_gamma(mu, size=size, dtype=np.float32) assert_equal(direct, existing) def test_output_fill_error(self): rg = self.rg size = (31, 7, 97) existing = np.empty(size) with pytest.raises(TypeError): rg.standard_normal(out=existing, dtype=np.float32) with pytest.raises(ValueError): rg.standard_normal(out=existing[::3]) existing = np.empty(size, dtype=np.float32) with pytest.raises(TypeError): rg.standard_normal(out=existing, dtype=np.float64) existing = np.zeros(size, dtype=np.float32) with pytest.raises(TypeError): rg.standard_gamma(1.0, out=existing, dtype=np.float64) with pytest.raises(ValueError): rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32) existing = np.zeros(size, dtype=np.float64) with pytest.raises(TypeError): rg.standard_gamma(1.0, out=existing, dtype=np.float32) with pytest.raises(ValueError): rg.standard_gamma(1.0, out=existing[::3]) def test_integers_broadcast(self, dtype): if dtype == np.bool_: upper = 2 lower = 0 else: info = np.iinfo(dtype) upper = int(info.max) + 1 lower = info.min self._reset_state() a = self.rg.integers(lower, [upper] * 10, dtype=dtype) self._reset_state() b = self.rg.integers([lower] * 10, upper, dtype=dtype) assert_equal(a, b) self._reset_state() c = self.rg.integers(lower, upper, size=10, dtype=dtype) assert_equal(a, c) self._reset_state() d = self.rg.integers(np.array( [lower] * 10), np.array([upper], dtype=object), size=10, dtype=dtype) assert_equal(a, d) self._reset_state() e = self.rg.integers( np.array([lower] * 10), np.array([upper] * 10), size=10, dtype=dtype) assert_equal(a, e) self._reset_state() a = self.rg.integers(0, upper, size=10, dtype=dtype) self._reset_state() b = self.rg.integers([upper] * 10, dtype=dtype) assert_equal(a, b) def test_integers_numpy(self, dtype): high = np.array([1]) low = np.array([0]) out = self.rg.integers(low, high, dtype=dtype) assert out.shape == (1,) out = self.rg.integers(low[0], high, dtype=dtype) assert out.shape == (1,) out = self.rg.integers(low, high[0], dtype=dtype) assert out.shape == (1,) def test_integers_broadcast_errors(self, dtype): if dtype == np.bool_: upper = 2 lower = 0 else: info = np.iinfo(dtype) upper = int(info.max) + 1 lower = info.min with pytest.raises(ValueError): self.rg.integers(lower, [upper + 1] * 10, dtype=dtype) with pytest.raises(ValueError): self.rg.integers(lower - 1, [upper] * 10, dtype=dtype) with pytest.raises(ValueError): self.rg.integers([lower - 1], [upper] * 10, dtype=dtype) with pytest.raises(ValueError): self.rg.integers([0], [0], dtype=dtype) class TestMT19937(RNG): @classmethod def setup_class(cls): cls.bit_generator = MT19937 cls.advance = None cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1] cls.rg = Generator(cls.bit_generator(*cls.seed)) cls.initial_state = cls.rg.bit_generator.state cls.seed_vector_bits = 32 cls._extra_setup() cls.seed_error = ValueError def test_numpy_state(self): nprg = np.random.RandomState() nprg.standard_normal(99) state = nprg.get_state() self.rg.bit_generator.state = state state2 = self.rg.bit_generator.state assert_((state[1] == state2['state']['key']).all()) assert_((state[2] == state2['state']['pos'])) class TestPhilox(RNG): @classmethod def setup_class(cls): cls.bit_generator = Philox cls.advance = 2**63 + 2**31 + 2**15 + 1 cls.seed = [12345] cls.rg = Generator(cls.bit_generator(*cls.seed)) cls.initial_state = cls.rg.bit_generator.state cls.seed_vector_bits = 64 cls._extra_setup() class TestSFC64(RNG): @classmethod def setup_class(cls): cls.bit_generator = SFC64 cls.advance = None cls.seed = [12345] cls.rg = Generator(cls.bit_generator(*cls.seed)) cls.initial_state = cls.rg.bit_generator.state cls.seed_vector_bits = 192 cls._extra_setup() class TestPCG64(RNG): @classmethod def setup_class(cls): cls.bit_generator = PCG64 cls.advance = 2**63 + 2**31 + 2**15 + 1 cls.seed = [12345] cls.rg = Generator(cls.bit_generator(*cls.seed)) cls.initial_state = cls.rg.bit_generator.state cls.seed_vector_bits = 64 cls._extra_setup() class TestPCG64DXSM(RNG): @classmethod def setup_class(cls): cls.bit_generator = PCG64DXSM cls.advance = 2**63 + 2**31 + 2**15 + 1 cls.seed = [12345] cls.rg = Generator(cls.bit_generator(*cls.seed)) cls.initial_state = cls.rg.bit_generator.state cls.seed_vector_bits = 64 cls._extra_setup() class TestDefaultRNG(RNG): @classmethod def setup_class(cls): # This will duplicate some tests that directly instantiate a fresh # Generator(), but that's okay. cls.bit_generator = PCG64 cls.advance = 2**63 + 2**31 + 2**15 + 1 cls.seed = [12345] cls.rg = np.random.default_rng(*cls.seed) cls.initial_state = cls.rg.bit_generator.state cls.seed_vector_bits = 64 cls._extra_setup() def test_default_is_pcg64(self): # In order to change the default BitGenerator, we'll go through # a deprecation cycle to move to a different function. assert_(isinstance(self.rg.bit_generator, PCG64)) def test_seed(self): np.random.default_rng() np.random.default_rng(None) np.random.default_rng(12345) np.random.default_rng(0) np.random.default_rng(43660444402423911716352051725018508569) np.random.default_rng([43660444402423911716352051725018508569, 279705150948142787361475340226491943209]) with pytest.raises(ValueError): np.random.default_rng(-1) with pytest.raises(ValueError): np.random.default_rng([12345, -1])