ok
Direktori : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/ |
Current File : //opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_api.py |
import sys import numpy as np from numpy.core._rational_tests import rational import pytest from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, assert_warns, HAS_REFCOUNT ) def test_array_array(): tobj = type(object) ones11 = np.ones((1, 1), np.float64) tndarray = type(ones11) # Test is_ndarray assert_equal(np.array(ones11, dtype=np.float64), ones11) if HAS_REFCOUNT: old_refcount = sys.getrefcount(tndarray) np.array(ones11) assert_equal(old_refcount, sys.getrefcount(tndarray)) # test None assert_equal(np.array(None, dtype=np.float64), np.array(np.nan, dtype=np.float64)) if HAS_REFCOUNT: old_refcount = sys.getrefcount(tobj) np.array(None, dtype=np.float64) assert_equal(old_refcount, sys.getrefcount(tobj)) # test scalar assert_equal(np.array(1.0, dtype=np.float64), np.ones((), dtype=np.float64)) if HAS_REFCOUNT: old_refcount = sys.getrefcount(np.float64) np.array(np.array(1.0, dtype=np.float64), dtype=np.float64) assert_equal(old_refcount, sys.getrefcount(np.float64)) # test string S2 = np.dtype((bytes, 2)) S3 = np.dtype((bytes, 3)) S5 = np.dtype((bytes, 5)) assert_equal(np.array(b"1.0", dtype=np.float64), np.ones((), dtype=np.float64)) assert_equal(np.array(b"1.0").dtype, S3) assert_equal(np.array(b"1.0", dtype=bytes).dtype, S3) assert_equal(np.array(b"1.0", dtype=S2), np.array(b"1.")) assert_equal(np.array(b"1", dtype=S5), np.ones((), dtype=S5)) # test string U2 = np.dtype((str, 2)) U3 = np.dtype((str, 3)) U5 = np.dtype((str, 5)) assert_equal(np.array("1.0", dtype=np.float64), np.ones((), dtype=np.float64)) assert_equal(np.array("1.0").dtype, U3) assert_equal(np.array("1.0", dtype=str).dtype, U3) assert_equal(np.array("1.0", dtype=U2), np.array(str("1."))) assert_equal(np.array("1", dtype=U5), np.ones((), dtype=U5)) builtins = getattr(__builtins__, '__dict__', __builtins__) assert_(hasattr(builtins, 'get')) # test memoryview dat = np.array(memoryview(b'1.0'), dtype=np.float64) assert_equal(dat, [49.0, 46.0, 48.0]) assert_(dat.dtype.type is np.float64) dat = np.array(memoryview(b'1.0')) assert_equal(dat, [49, 46, 48]) assert_(dat.dtype.type is np.uint8) # test array interface a = np.array(100.0, dtype=np.float64) o = type("o", (object,), dict(__array_interface__=a.__array_interface__)) assert_equal(np.array(o, dtype=np.float64), a) # test array_struct interface a = np.array([(1, 4.0, 'Hello'), (2, 6.0, 'World')], dtype=[('f0', int), ('f1', float), ('f2', str)]) o = type("o", (object,), dict(__array_struct__=a.__array_struct__)) ## wasn't what I expected... is np.array(o) supposed to equal a ? ## instead we get a array([...], dtype=">V18") assert_equal(bytes(np.array(o).data), bytes(a.data)) # test array o = type("o", (object,), dict(__array__=lambda *x: np.array(100.0, dtype=np.float64)))() assert_equal(np.array(o, dtype=np.float64), np.array(100.0, np.float64)) # test recursion nested = 1.5 for i in range(np.MAXDIMS): nested = [nested] # no error np.array(nested) # Exceeds recursion limit assert_raises(ValueError, np.array, [nested], dtype=np.float64) # Try with lists... # float32 assert_equal(np.array([None] * 10, dtype=np.float32), np.full((10,), np.nan, dtype=np.float32)) assert_equal(np.array([[None]] * 10, dtype=np.float32), np.full((10, 1), np.nan, dtype=np.float32)) assert_equal(np.array([[None] * 10], dtype=np.float32), np.full((1, 10), np.nan, dtype=np.float32)) assert_equal(np.array([[None] * 10] * 10, dtype=np.float32), np.full((10, 10), np.nan, dtype=np.float32)) # float64 assert_equal(np.array([None] * 10, dtype=np.float64), np.full((10,), np.nan, dtype=np.float64)) assert_equal(np.array([[None]] * 10, dtype=np.float64), np.full((10, 1), np.nan, dtype=np.float64)) assert_equal(np.array([[None] * 10], dtype=np.float64), np.full((1, 10), np.nan, dtype=np.float64)) assert_equal(np.array([[None] * 10] * 10, dtype=np.float64), np.full((10, 10), np.nan, dtype=np.float64)) assert_equal(np.array([1.0] * 10, dtype=np.float64), np.ones((10,), dtype=np.float64)) assert_equal(np.array([[1.0]] * 10, dtype=np.float64), np.ones((10, 1), dtype=np.float64)) assert_equal(np.array([[1.0] * 10], dtype=np.float64), np.ones((1, 10), dtype=np.float64)) assert_equal(np.array([[1.0] * 10] * 10, dtype=np.float64), np.ones((10, 10), dtype=np.float64)) # Try with tuples assert_equal(np.array((None,) * 10, dtype=np.float64), np.full((10,), np.nan, dtype=np.float64)) assert_equal(np.array([(None,)] * 10, dtype=np.float64), np.full((10, 1), np.nan, dtype=np.float64)) assert_equal(np.array([(None,) * 10], dtype=np.float64), np.full((1, 10), np.nan, dtype=np.float64)) assert_equal(np.array([(None,) * 10] * 10, dtype=np.float64), np.full((10, 10), np.nan, dtype=np.float64)) assert_equal(np.array((1.0,) * 10, dtype=np.float64), np.ones((10,), dtype=np.float64)) assert_equal(np.array([(1.0,)] * 10, dtype=np.float64), np.ones((10, 1), dtype=np.float64)) assert_equal(np.array([(1.0,) * 10], dtype=np.float64), np.ones((1, 10), dtype=np.float64)) assert_equal(np.array([(1.0,) * 10] * 10, dtype=np.float64), np.ones((10, 10), dtype=np.float64)) @pytest.mark.parametrize("array", [True, False]) def test_array_impossible_casts(array): # All builtin types can be forcibly cast, at least theoretically, # but user dtypes cannot necessarily. rt = rational(1, 2) if array: rt = np.array(rt) with assert_raises(TypeError): np.array(rt, dtype="M8") # TODO: remove when fastCopyAndTranspose deprecation expires @pytest.mark.parametrize("a", ( np.array(2), # 0D array np.array([3, 2, 7, 0]), # 1D array np.arange(6).reshape(2, 3) # 2D array ), ) def test_fastCopyAndTranspose(a): with pytest.deprecated_call(): b = np.fastCopyAndTranspose(a) assert_equal(b, a.T) assert b.flags.owndata def test_array_astype(): a = np.arange(6, dtype='f4').reshape(2, 3) # Default behavior: allows unsafe casts, keeps memory layout, # always copies. b = a.astype('i4') assert_equal(a, b) assert_equal(b.dtype, np.dtype('i4')) assert_equal(a.strides, b.strides) b = a.T.astype('i4') assert_equal(a.T, b) assert_equal(b.dtype, np.dtype('i4')) assert_equal(a.T.strides, b.strides) b = a.astype('f4') assert_equal(a, b) assert_(not (a is b)) # copy=False parameter can sometimes skip a copy b = a.astype('f4', copy=False) assert_(a is b) # order parameter allows overriding of the memory layout, # forcing a copy if the layout is wrong b = a.astype('f4', order='F', copy=False) assert_equal(a, b) assert_(not (a is b)) assert_(b.flags.f_contiguous) b = a.astype('f4', order='C', copy=False) assert_equal(a, b) assert_(a is b) assert_(b.flags.c_contiguous) # casting parameter allows catching bad casts b = a.astype('c8', casting='safe') assert_equal(a, b) assert_equal(b.dtype, np.dtype('c8')) assert_raises(TypeError, a.astype, 'i4', casting='safe') # subok=False passes through a non-subclassed array b = a.astype('f4', subok=0, copy=False) assert_(a is b) class MyNDArray(np.ndarray): pass a = np.array([[0, 1, 2], [3, 4, 5]], dtype='f4').view(MyNDArray) # subok=True passes through a subclass b = a.astype('f4', subok=True, copy=False) assert_(a is b) # subok=True is default, and creates a subtype on a cast b = a.astype('i4', copy=False) assert_equal(a, b) assert_equal(type(b), MyNDArray) # subok=False never returns a subclass b = a.astype('f4', subok=False, copy=False) assert_equal(a, b) assert_(not (a is b)) assert_(type(b) is not MyNDArray) # Make sure converting from string object to fixed length string # does not truncate. a = np.array([b'a'*100], dtype='O') b = a.astype('S') assert_equal(a, b) assert_equal(b.dtype, np.dtype('S100')) a = np.array(['a'*100], dtype='O') b = a.astype('U') assert_equal(a, b) assert_equal(b.dtype, np.dtype('U100')) # Same test as above but for strings shorter than 64 characters a = np.array([b'a'*10], dtype='O') b = a.astype('S') assert_equal(a, b) assert_equal(b.dtype, np.dtype('S10')) a = np.array(['a'*10], dtype='O') b = a.astype('U') assert_equal(a, b) assert_equal(b.dtype, np.dtype('U10')) a = np.array(123456789012345678901234567890, dtype='O').astype('S') assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30')) a = np.array(123456789012345678901234567890, dtype='O').astype('U') assert_array_equal(a, np.array('1234567890' * 3, dtype='U30')) a = np.array([123456789012345678901234567890], dtype='O').astype('S') assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30')) a = np.array([123456789012345678901234567890], dtype='O').astype('U') assert_array_equal(a, np.array('1234567890' * 3, dtype='U30')) a = np.array(123456789012345678901234567890, dtype='S') assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30')) a = np.array(123456789012345678901234567890, dtype='U') assert_array_equal(a, np.array('1234567890' * 3, dtype='U30')) a = np.array('a\u0140', dtype='U') b = np.ndarray(buffer=a, dtype='uint32', shape=2) assert_(b.size == 2) a = np.array([1000], dtype='i4') assert_raises(TypeError, a.astype, 'S1', casting='safe') a = np.array(1000, dtype='i4') assert_raises(TypeError, a.astype, 'U1', casting='safe') # gh-24023 assert_raises(TypeError, a.astype) @pytest.mark.parametrize("dt", ["S", "U"]) def test_array_astype_to_string_discovery_empty(dt): # See also gh-19085 arr = np.array([""], dtype=object) # Note, the itemsize is the `0 -> 1` logic, which should change. # The important part the test is rather that it does not error. assert arr.astype(dt).dtype.itemsize == np.dtype(f"{dt}1").itemsize # check the same thing for `np.can_cast` (since it accepts arrays) assert np.can_cast(arr, dt, casting="unsafe") assert not np.can_cast(arr, dt, casting="same_kind") # as well as for the object as a descriptor: assert np.can_cast("O", dt, casting="unsafe") @pytest.mark.parametrize("dt", ["d", "f", "S13", "U32"]) def test_array_astype_to_void(dt): dt = np.dtype(dt) arr = np.array([], dtype=dt) assert arr.astype("V").dtype.itemsize == dt.itemsize def test_object_array_astype_to_void(): # This is different to `test_array_astype_to_void` as object arrays # are inspected. The default void is "V8" (8 is the length of double) arr = np.array([], dtype="O").astype("V") assert arr.dtype == "V8" @pytest.mark.parametrize("t", np.sctypes['uint'] + np.sctypes['int'] + np.sctypes['float'] ) def test_array_astype_warning(t): # test ComplexWarning when casting from complex to float or int a = np.array(10, dtype=np.complex_) assert_warns(np.ComplexWarning, a.astype, t) @pytest.mark.parametrize(["dtype", "out_dtype"], [(np.bytes_, np.bool_), (np.str_, np.bool_), (np.dtype("S10,S9"), np.dtype("?,?"))]) def test_string_to_boolean_cast(dtype, out_dtype): """ Currently, for `astype` strings are cast to booleans effectively by calling `bool(int(string)`. This is not consistent (see gh-9875) and will eventually be deprecated. """ arr = np.array(["10", "10\0\0\0", "0\0\0", "0"], dtype=dtype) expected = np.array([True, True, False, False], dtype=out_dtype) assert_array_equal(arr.astype(out_dtype), expected) @pytest.mark.parametrize(["dtype", "out_dtype"], [(np.bytes_, np.bool_), (np.str_, np.bool_), (np.dtype("S10,S9"), np.dtype("?,?"))]) def test_string_to_boolean_cast_errors(dtype, out_dtype): """ These currently error out, since cast to integers fails, but should not error out in the future. """ for invalid in ["False", "True", "", "\0", "non-empty"]: arr = np.array([invalid], dtype=dtype) with assert_raises(ValueError): arr.astype(out_dtype) @pytest.mark.parametrize("str_type", [str, bytes, np.str_, np.unicode_]) @pytest.mark.parametrize("scalar_type", [np.complex64, np.complex128, np.clongdouble]) def test_string_to_complex_cast(str_type, scalar_type): value = scalar_type(b"1+3j") assert scalar_type(value) == 1+3j assert np.array([value], dtype=object).astype(scalar_type)[()] == 1+3j assert np.array(value).astype(scalar_type)[()] == 1+3j arr = np.zeros(1, dtype=scalar_type) arr[0] = value assert arr[0] == 1+3j @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) def test_none_to_nan_cast(dtype): # Note that at the time of writing this test, the scalar constructors # reject None arr = np.zeros(1, dtype=dtype) arr[0] = None assert np.isnan(arr)[0] assert np.isnan(np.array(None, dtype=dtype))[()] assert np.isnan(np.array([None], dtype=dtype))[0] assert np.isnan(np.array(None).astype(dtype))[()] def test_copyto_fromscalar(): a = np.arange(6, dtype='f4').reshape(2, 3) # Simple copy np.copyto(a, 1.5) assert_equal(a, 1.5) np.copyto(a.T, 2.5) assert_equal(a, 2.5) # Where-masked copy mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?') np.copyto(a, 3.5, where=mask) assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]]) mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?') np.copyto(a.T, 4.5, where=mask) assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]]) def test_copyto(): a = np.arange(6, dtype='i4').reshape(2, 3) # Simple copy np.copyto(a, [[3, 1, 5], [6, 2, 1]]) assert_equal(a, [[3, 1, 5], [6, 2, 1]]) # Overlapping copy should work np.copyto(a[:, :2], a[::-1, 1::-1]) assert_equal(a, [[2, 6, 5], [1, 3, 1]]) # Defaults to 'same_kind' casting assert_raises(TypeError, np.copyto, a, 1.5) # Force a copy with 'unsafe' casting, truncating 1.5 to 1 np.copyto(a, 1.5, casting='unsafe') assert_equal(a, 1) # Copying with a mask np.copyto(a, 3, where=[True, False, True]) assert_equal(a, [[3, 1, 3], [3, 1, 3]]) # Casting rule still applies with a mask assert_raises(TypeError, np.copyto, a, 3.5, where=[True, False, True]) # Lists of integer 0's and 1's is ok too np.copyto(a, 4.0, casting='unsafe', where=[[0, 1, 1], [1, 0, 0]]) assert_equal(a, [[3, 4, 4], [4, 1, 3]]) # Overlapping copy with mask should work np.copyto(a[:, :2], a[::-1, 1::-1], where=[[0, 1], [1, 1]]) assert_equal(a, [[3, 4, 4], [4, 3, 3]]) # 'dst' must be an array assert_raises(TypeError, np.copyto, [1, 2, 3], [2, 3, 4]) def test_copyto_permut(): # test explicit overflow case pad = 500 l = [True] * pad + [True, True, True, True] r = np.zeros(len(l)-pad) d = np.ones(len(l)-pad) mask = np.array(l)[pad:] np.copyto(r, d, where=mask[::-1]) # test all permutation of possible masks, 9 should be sufficient for # current 4 byte unrolled code power = 9 d = np.ones(power) for i in range(2**power): r = np.zeros(power) l = [(i & x) != 0 for x in range(power)] mask = np.array(l) np.copyto(r, d, where=mask) assert_array_equal(r == 1, l) assert_equal(r.sum(), sum(l)) r = np.zeros(power) np.copyto(r, d, where=mask[::-1]) assert_array_equal(r == 1, l[::-1]) assert_equal(r.sum(), sum(l)) r = np.zeros(power) np.copyto(r[::2], d[::2], where=mask[::2]) assert_array_equal(r[::2] == 1, l[::2]) assert_equal(r[::2].sum(), sum(l[::2])) r = np.zeros(power) np.copyto(r[::2], d[::2], where=mask[::-2]) assert_array_equal(r[::2] == 1, l[::-2]) assert_equal(r[::2].sum(), sum(l[::-2])) for c in [0xFF, 0x7F, 0x02, 0x10]: r = np.zeros(power) mask = np.array(l) imask = np.array(l).view(np.uint8) imask[mask != 0] = c np.copyto(r, d, where=mask) assert_array_equal(r == 1, l) assert_equal(r.sum(), sum(l)) r = np.zeros(power) np.copyto(r, d, where=True) assert_equal(r.sum(), r.size) r = np.ones(power) d = np.zeros(power) np.copyto(r, d, where=False) assert_equal(r.sum(), r.size) def test_copy_order(): a = np.arange(24).reshape(2, 1, 3, 4) b = a.copy(order='F') c = np.arange(24).reshape(2, 1, 4, 3).swapaxes(2, 3) def check_copy_result(x, y, ccontig, fcontig, strides=False): assert_(not (x is y)) assert_equal(x, y) assert_equal(res.flags.c_contiguous, ccontig) assert_equal(res.flags.f_contiguous, fcontig) # Validate the initial state of a, b, and c assert_(a.flags.c_contiguous) assert_(not a.flags.f_contiguous) assert_(not b.flags.c_contiguous) assert_(b.flags.f_contiguous) assert_(not c.flags.c_contiguous) assert_(not c.flags.f_contiguous) # Copy with order='C' res = a.copy(order='C') check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) res = b.copy(order='C') check_copy_result(res, b, ccontig=True, fcontig=False, strides=False) res = c.copy(order='C') check_copy_result(res, c, ccontig=True, fcontig=False, strides=False) res = np.copy(a, order='C') check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) res = np.copy(b, order='C') check_copy_result(res, b, ccontig=True, fcontig=False, strides=False) res = np.copy(c, order='C') check_copy_result(res, c, ccontig=True, fcontig=False, strides=False) # Copy with order='F' res = a.copy(order='F') check_copy_result(res, a, ccontig=False, fcontig=True, strides=False) res = b.copy(order='F') check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) res = c.copy(order='F') check_copy_result(res, c, ccontig=False, fcontig=True, strides=False) res = np.copy(a, order='F') check_copy_result(res, a, ccontig=False, fcontig=True, strides=False) res = np.copy(b, order='F') check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) res = np.copy(c, order='F') check_copy_result(res, c, ccontig=False, fcontig=True, strides=False) # Copy with order='K' res = a.copy(order='K') check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) res = b.copy(order='K') check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) res = c.copy(order='K') check_copy_result(res, c, ccontig=False, fcontig=False, strides=True) res = np.copy(a, order='K') check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) res = np.copy(b, order='K') check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) res = np.copy(c, order='K') check_copy_result(res, c, ccontig=False, fcontig=False, strides=True) def test_contiguous_flags(): a = np.ones((4, 4, 1))[::2,:,:] a.strides = a.strides[:2] + (-123,) b = np.ones((2, 2, 1, 2, 2)).swapaxes(3, 4) def check_contig(a, ccontig, fcontig): assert_(a.flags.c_contiguous == ccontig) assert_(a.flags.f_contiguous == fcontig) # Check if new arrays are correct: check_contig(a, False, False) check_contig(b, False, False) check_contig(np.empty((2, 2, 0, 2, 2)), True, True) check_contig(np.array([[[1], [2]]], order='F'), True, True) check_contig(np.empty((2, 2)), True, False) check_contig(np.empty((2, 2), order='F'), False, True) # Check that np.array creates correct contiguous flags: check_contig(np.array(a, copy=False), False, False) check_contig(np.array(a, copy=False, order='C'), True, False) check_contig(np.array(a, ndmin=4, copy=False, order='F'), False, True) # Check slicing update of flags and : check_contig(a[0], True, True) check_contig(a[None, ::4, ..., None], True, True) check_contig(b[0, 0, ...], False, True) check_contig(b[:, :, 0:0, :, :], True, True) # Test ravel and squeeze. check_contig(a.ravel(), True, True) check_contig(np.ones((1, 3, 1)).squeeze(), True, True) def test_broadcast_arrays(): # Test user defined dtypes a = np.array([(1, 2, 3)], dtype='u4,u4,u4') b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4') result = np.broadcast_arrays(a, b) assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4')) assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4')) @pytest.mark.parametrize(["shape", "fill_value", "expected_output"], [((2, 2), [5.0, 6.0], np.array([[5.0, 6.0], [5.0, 6.0]])), ((3, 2), [1.0, 2.0], np.array([[1.0, 2.0], [1.0, 2.0], [1.0, 2.0]]))]) def test_full_from_list(shape, fill_value, expected_output): output = np.full(shape, fill_value) assert_equal(output, expected_output) def test_astype_copyflag(): # test the various copyflag options arr = np.arange(10, dtype=np.intp) res_true = arr.astype(np.intp, copy=True) assert not np.may_share_memory(arr, res_true) res_always = arr.astype(np.intp, copy=np._CopyMode.ALWAYS) assert not np.may_share_memory(arr, res_always) res_false = arr.astype(np.intp, copy=False) # `res_false is arr` currently, but check `may_share_memory`. assert np.may_share_memory(arr, res_false) res_if_needed = arr.astype(np.intp, copy=np._CopyMode.IF_NEEDED) # `res_if_needed is arr` currently, but check `may_share_memory`. assert np.may_share_memory(arr, res_if_needed) res_never = arr.astype(np.intp, copy=np._CopyMode.NEVER) assert np.may_share_memory(arr, res_never) # Simple tests for when a copy is necessary: res_false = arr.astype(np.float64, copy=False) assert_array_equal(res_false, arr) res_if_needed = arr.astype(np.float64, copy=np._CopyMode.IF_NEEDED) assert_array_equal(res_if_needed, arr) assert_raises(ValueError, arr.astype, np.float64, copy=np._CopyMode.NEVER)