ok
Direktori : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/ |
Current File : //opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/arraypad.pyi |
from typing import ( Literal as L, Any, overload, TypeVar, Protocol, ) from numpy import generic from numpy._typing import ( ArrayLike, NDArray, _ArrayLikeInt, _ArrayLike, ) _SCT = TypeVar("_SCT", bound=generic) class _ModeFunc(Protocol): def __call__( self, vector: NDArray[Any], iaxis_pad_width: tuple[int, int], iaxis: int, kwargs: dict[str, Any], /, ) -> None: ... _ModeKind = L[ "constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty", ] __all__: list[str] # TODO: In practice each keyword argument is exclusive to one or more # specific modes. Consider adding more overloads to express this in the future. # Expand `**kwargs` into explicit keyword-only arguments @overload def pad( array: _ArrayLike[_SCT], pad_width: _ArrayLikeInt, mode: _ModeKind = ..., *, stat_length: None | _ArrayLikeInt = ..., constant_values: ArrayLike = ..., end_values: ArrayLike = ..., reflect_type: L["odd", "even"] = ..., ) -> NDArray[_SCT]: ... @overload def pad( array: ArrayLike, pad_width: _ArrayLikeInt, mode: _ModeKind = ..., *, stat_length: None | _ArrayLikeInt = ..., constant_values: ArrayLike = ..., end_values: ArrayLike = ..., reflect_type: L["odd", "even"] = ..., ) -> NDArray[Any]: ... @overload def pad( array: _ArrayLike[_SCT], pad_width: _ArrayLikeInt, mode: _ModeFunc, **kwargs: Any, ) -> NDArray[_SCT]: ... @overload def pad( array: ArrayLike, pad_width: _ArrayLikeInt, mode: _ModeFunc, **kwargs: Any, ) -> NDArray[Any]: ...