ok
Direktori : /opt/cpanel/ea-openssl11/share/man/man3/ |
Current File : //opt/cpanel/ea-openssl11/share/man/man3/EC_POINT_mul.3 |
.\" Automatically generated by Pod::Man 4.11 (Pod::Simple 3.35) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "EC_POINT_ADD 3" .TH EC_POINT_ADD 3 "2023-09-11" "1.1.1w" "OpenSSL" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp, EC_POINT_make_affine, EC_POINTs_make_affine, EC_POINTs_mul, EC_POINT_mul, EC_GROUP_precompute_mult, EC_GROUP_have_precompute_mult \- Functions for performing mathematical operations and tests on EC_POINT objects .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include <openssl/ec.h> \& \& int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, \& const EC_POINT *b, BN_CTX *ctx); \& int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx); \& int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx); \& int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *p); \& int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx); \& int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); \& int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx); \& int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, \& EC_POINT *points[], BN_CTX *ctx); \& int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, size_t num, \& const EC_POINT *p[], const BIGNUM *m[], BN_CTX *ctx); \& int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, \& const EC_POINT *q, const BIGNUM *m, BN_CTX *ctx); \& int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx); \& int EC_GROUP_have_precompute_mult(const EC_GROUP *group); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" EC_POINT_add adds the two points \fBa\fR and \fBb\fR and places the result in \fBr\fR. Similarly EC_POINT_dbl doubles the point \fBa\fR and places the result in \fBr\fR. In both cases it is valid for \fBr\fR to be one of \fBa\fR or \fBb\fR. .PP EC_POINT_invert calculates the inverse of the supplied point \fBa\fR. The result is placed back in \fBa\fR. .PP The function EC_POINT_is_at_infinity tests whether the supplied point is at infinity or not. .PP EC_POINT_is_on_curve tests whether the supplied point is on the curve or not. .PP EC_POINT_cmp compares the two supplied points and tests whether or not they are equal. .PP The functions EC_POINT_make_affine and EC_POINTs_make_affine force the internal representation of the \s-1EC_POINT\s0(s) into the affine co-ordinate system. In the case of EC_POINTs_make_affine the value \fBnum\fR provides the number of points in the array \fBpoints\fR to be forced. .PP EC_POINT_mul is a convenient interface to EC_POINTs_mul: it calculates the value generator * \fBn\fR + \fBq\fR * \fBm\fR and stores the result in \fBr\fR. The value \fBn\fR may be \s-1NULL\s0 in which case the result is just \fBq\fR * \fBm\fR (variable point multiplication). Alternatively, both \fBq\fR and \fBm\fR may be \s-1NULL,\s0 and \fBn\fR non-NULL, in which case the result is just generator * \fBn\fR (fixed point multiplication). When performing a single fixed or variable point multiplication, the underlying implementation uses a constant time algorithm, when the input scalar (either \fBn\fR or \fBm\fR) is in the range [0, ec_group_order). .PP EC_POINTs_mul calculates the value generator * \fBn\fR + \fBq[0]\fR * \fBm[0]\fR + ... + \fBq[num\-1]\fR * \fBm[num\-1]\fR. As for EC_POINT_mul the value \fBn\fR may be \s-1NULL\s0 or \fBnum\fR may be zero. When performing a fixed point multiplication (\fBn\fR is non-NULL and \fBnum\fR is 0) or a variable point multiplication (\fBn\fR is \s-1NULL\s0 and \fBnum\fR is 1), the underlying implementation uses a constant time algorithm, when the input scalar (either \fBn\fR or \fBm[0]\fR) is in the range [0, ec_group_order). .PP The function EC_GROUP_precompute_mult stores multiples of the generator for faster point multiplication, whilst EC_GROUP_have_precompute_mult tests whether precomputation has already been done. See \fBEC_GROUP_copy\fR\|(3) for information about the generator. .SH "RETURN VALUES" .IX Header "RETURN VALUES" The following functions return 1 on success or 0 on error: EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_make_affine, EC_POINTs_make_affine, EC_POINTs_make_affine, EC_POINT_mul, EC_POINTs_mul and EC_GROUP_precompute_mult. .PP EC_POINT_is_at_infinity returns 1 if the point is at infinity, or 0 otherwise. .PP EC_POINT_is_on_curve returns 1 if the point is on the curve, 0 if not, or \-1 on error. .PP EC_POINT_cmp returns 1 if the points are not equal, 0 if they are, or \-1 on error. .PP EC_GROUP_have_precompute_mult return 1 if a precomputation has been done, or 0 if not. .SH "SEE ALSO" .IX Header "SEE ALSO" \&\fBcrypto\fR\|(7), \fBEC_GROUP_new\fR\|(3), \fBEC_GROUP_copy\fR\|(3), \&\fBEC_POINT_new\fR\|(3), \fBEC_KEY_new\fR\|(3), \&\fBEC_GFp_simple_method\fR\|(3), \fBd2i_ECPKParameters\fR\|(3) .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright 2013\-2018 The OpenSSL Project Authors. All Rights Reserved. .PP Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.