ok
Direktori : /opt/imunify360/venv/lib64/python3.11/site-packages/Crypto/Math/ |
Current File : //opt/imunify360/venv/lib64/python3.11/site-packages/Crypto/Math/_IntegerGMP.py |
# =================================================================== # # Copyright (c) 2014, Legrandin <helderijs@gmail.com> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # =================================================================== import sys from Crypto.Util.py3compat import tobytes, is_native_int from Crypto.Util._raw_api import (backend, load_lib, get_raw_buffer, get_c_string, null_pointer, create_string_buffer, c_ulong, c_size_t, c_uint8_ptr) from ._IntegerBase import IntegerBase gmp_defs = """typedef unsigned long UNIX_ULONG; typedef struct { int a; int b; void *c; } MPZ; typedef MPZ mpz_t[1]; typedef UNIX_ULONG mp_bitcnt_t; void __gmpz_init (mpz_t x); void __gmpz_init_set (mpz_t rop, const mpz_t op); void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op); UNIX_ULONG __gmpz_get_ui (const mpz_t op); void __gmpz_set (mpz_t rop, const mpz_t op); void __gmpz_set_ui (mpz_t rop, UNIX_ULONG op); void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2); void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2); void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); void __gmpz_import (mpz_t rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op); void * __gmpz_export (void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mpz_t op); size_t __gmpz_sizeinbase (const mpz_t op, int base); void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2); void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2); void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); int __gmpz_cmp (const mpz_t op1, const mpz_t op2); void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const mpz_t mod); void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp, const mpz_t mod); void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp); void __gmpz_sqrt(mpz_t rop, const mpz_t op); void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d); void __gmpz_neg (mpz_t rop, const mpz_t op); void __gmpz_abs (mpz_t rop, const mpz_t op); void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2); void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2); void __gmpz_clear (mpz_t x); void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b); void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d); void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2); int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index); int __gmpz_perfect_square_p (const mpz_t op); int __gmpz_jacobi (const mpz_t a, const mpz_t b); void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2); UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2); void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2); int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2); int __gmpz_divisible_p (const mpz_t n, const mpz_t d); int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d); """ if sys.platform == "win32": raise ImportError("Not using GMP on Windows") lib = load_lib("gmp", gmp_defs) implementation = {"library": "gmp", "api": backend} if hasattr(lib, "__mpir_version"): raise ImportError("MPIR library detected") # In order to create a function that returns a pointer to # a new MPZ structure, we need to break the abstraction # and know exactly what ffi backend we have if implementation["api"] == "ctypes": from ctypes import Structure, c_int, c_void_p, byref class _MPZ(Structure): _fields_ = [('_mp_alloc', c_int), ('_mp_size', c_int), ('_mp_d', c_void_p)] def new_mpz(): return byref(_MPZ()) else: # We are using CFFI from Crypto.Util._raw_api import ffi def new_mpz(): return ffi.new("MPZ*") # Lazy creation of GMP methods class _GMP(object): def __getattr__(self, name): if name.startswith("mpz_"): func_name = "__gmpz_" + name[4:] elif name.startswith("gmp_"): func_name = "__gmp_" + name[4:] else: raise AttributeError("Attribute %s is invalid" % name) func = getattr(lib, func_name) setattr(self, name, func) return func _gmp = _GMP() class IntegerGMP(IntegerBase): """A fast, arbitrary precision integer""" _zero_mpz_p = new_mpz() _gmp.mpz_init_set_ui(_zero_mpz_p, c_ulong(0)) def __init__(self, value): """Initialize the integer to the given value.""" self._mpz_p = new_mpz() self._initialized = False if isinstance(value, float): raise ValueError("A floating point type is not a natural number") if is_native_int(value): _gmp.mpz_init(self._mpz_p) self._initialized = True if value == 0: return tmp = new_mpz() _gmp.mpz_init(tmp) try: positive = value >= 0 reduce = abs(value) slots = (reduce.bit_length() - 1) // 32 + 1 while slots > 0: slots = slots - 1 _gmp.mpz_set_ui(tmp, c_ulong(0xFFFFFFFF & (reduce >> (slots * 32)))) _gmp.mpz_mul_2exp(tmp, tmp, c_ulong(slots * 32)) _gmp.mpz_add(self._mpz_p, self._mpz_p, tmp) finally: _gmp.mpz_clear(tmp) if not positive: _gmp.mpz_neg(self._mpz_p, self._mpz_p) elif isinstance(value, IntegerGMP): _gmp.mpz_init_set(self._mpz_p, value._mpz_p) self._initialized = True else: raise NotImplementedError # Conversions def __int__(self): tmp = new_mpz() _gmp.mpz_init_set(tmp, self._mpz_p) try: value = 0 slot = 0 while _gmp.mpz_cmp(tmp, self._zero_mpz_p) != 0: lsb = _gmp.mpz_get_ui(tmp) & 0xFFFFFFFF value |= lsb << (slot * 32) _gmp.mpz_tdiv_q_2exp(tmp, tmp, c_ulong(32)) slot = slot + 1 finally: _gmp.mpz_clear(tmp) if self < 0: value = -value return int(value) def __str__(self): return str(int(self)) def __repr__(self): return "Integer(%s)" % str(self) # Only Python 2.x def __hex__(self): return hex(int(self)) # Only Python 3.x def __index__(self): return int(self) def to_bytes(self, block_size=0, byteorder='big'): """Convert the number into a byte string. This method encodes the number in network order and prepends as many zero bytes as required. It only works for non-negative values. :Parameters: block_size : integer The exact size the output byte string must have. If zero, the string has the minimal length. byteorder : string 'big' for big-endian integers (default), 'little' for litte-endian. :Returns: A byte string. :Raise ValueError: If the value is negative or if ``block_size`` is provided and the length of the byte string would exceed it. """ if self < 0: raise ValueError("Conversion only valid for non-negative numbers") buf_len = (_gmp.mpz_sizeinbase(self._mpz_p, 2) + 7) // 8 if buf_len > block_size > 0: raise ValueError("Number is too big to convert to byte string" " of prescribed length") buf = create_string_buffer(buf_len) _gmp.mpz_export( buf, null_pointer, # Ignore countp 1, # Big endian c_size_t(1), # Each word is 1 byte long 0, # Endianess within a word - not relevant c_size_t(0), # No nails self._mpz_p) result = b'\x00' * max(0, block_size - buf_len) + get_raw_buffer(buf) if byteorder == 'big': pass elif byteorder == 'little': result = bytearray(result) result.reverse() result = bytes(result) else: raise ValueError("Incorrect byteorder") return result @staticmethod def from_bytes(byte_string, byteorder='big'): """Convert a byte string into a number. :Parameters: byte_string : byte string The input number, encoded in network order. It can only be non-negative. byteorder : string 'big' for big-endian integers (default), 'little' for litte-endian. :Return: The ``Integer`` object carrying the same value as the input. """ result = IntegerGMP(0) if byteorder == 'big': pass elif byteorder == 'little': byte_string = bytearray(byte_string) byte_string.reverse() else: raise ValueError("Incorrect byteorder") _gmp.mpz_import( result._mpz_p, c_size_t(len(byte_string)), # Amount of words to read 1, # Big endian c_size_t(1), # Each word is 1 byte long 0, # Endianess within a word - not relevant c_size_t(0), # No nails c_uint8_ptr(byte_string)) return result # Relations def _apply_and_return(self, func, term): if not isinstance(term, IntegerGMP): term = IntegerGMP(term) return func(self._mpz_p, term._mpz_p) def __eq__(self, term): if not (isinstance(term, IntegerGMP) or is_native_int(term)): return False return self._apply_and_return(_gmp.mpz_cmp, term) == 0 def __ne__(self, term): if not (isinstance(term, IntegerGMP) or is_native_int(term)): return True return self._apply_and_return(_gmp.mpz_cmp, term) != 0 def __lt__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) < 0 def __le__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) <= 0 def __gt__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) > 0 def __ge__(self, term): return self._apply_and_return(_gmp.mpz_cmp, term) >= 0 def __nonzero__(self): return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) != 0 __bool__ = __nonzero__ def is_negative(self): return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) < 0 # Arithmetic operations def __add__(self, term): result = IntegerGMP(0) if not isinstance(term, IntegerGMP): try: term = IntegerGMP(term) except NotImplementedError: return NotImplemented _gmp.mpz_add(result._mpz_p, self._mpz_p, term._mpz_p) return result def __sub__(self, term): result = IntegerGMP(0) if not isinstance(term, IntegerGMP): try: term = IntegerGMP(term) except NotImplementedError: return NotImplemented _gmp.mpz_sub(result._mpz_p, self._mpz_p, term._mpz_p) return result def __mul__(self, term): result = IntegerGMP(0) if not isinstance(term, IntegerGMP): try: term = IntegerGMP(term) except NotImplementedError: return NotImplemented _gmp.mpz_mul(result._mpz_p, self._mpz_p, term._mpz_p) return result def __floordiv__(self, divisor): if not isinstance(divisor, IntegerGMP): divisor = IntegerGMP(divisor) if _gmp.mpz_cmp(divisor._mpz_p, self._zero_mpz_p) == 0: raise ZeroDivisionError("Division by zero") result = IntegerGMP(0) _gmp.mpz_fdiv_q(result._mpz_p, self._mpz_p, divisor._mpz_p) return result def __mod__(self, divisor): if not isinstance(divisor, IntegerGMP): divisor = IntegerGMP(divisor) comp = _gmp.mpz_cmp(divisor._mpz_p, self._zero_mpz_p) if comp == 0: raise ZeroDivisionError("Division by zero") if comp < 0: raise ValueError("Modulus must be positive") result = IntegerGMP(0) _gmp.mpz_mod(result._mpz_p, self._mpz_p, divisor._mpz_p) return result def inplace_pow(self, exponent, modulus=None): if modulus is None: if exponent < 0: raise ValueError("Exponent must not be negative") # Normal exponentiation if exponent > 256: raise ValueError("Exponent is too big") _gmp.mpz_pow_ui(self._mpz_p, self._mpz_p, # Base c_ulong(int(exponent)) ) else: # Modular exponentiation if not isinstance(modulus, IntegerGMP): modulus = IntegerGMP(modulus) if not modulus: raise ZeroDivisionError("Division by zero") if modulus.is_negative(): raise ValueError("Modulus must be positive") if is_native_int(exponent): if exponent < 0: raise ValueError("Exponent must not be negative") if exponent < 65536: _gmp.mpz_powm_ui(self._mpz_p, self._mpz_p, c_ulong(exponent), modulus._mpz_p) return self exponent = IntegerGMP(exponent) elif exponent.is_negative(): raise ValueError("Exponent must not be negative") _gmp.mpz_powm(self._mpz_p, self._mpz_p, exponent._mpz_p, modulus._mpz_p) return self def __pow__(self, exponent, modulus=None): result = IntegerGMP(self) return result.inplace_pow(exponent, modulus) def __abs__(self): result = IntegerGMP(0) _gmp.mpz_abs(result._mpz_p, self._mpz_p) return result def sqrt(self, modulus=None): """Return the largest Integer that does not exceed the square root""" if modulus is None: if self < 0: raise ValueError("Square root of negative value") result = IntegerGMP(0) _gmp.mpz_sqrt(result._mpz_p, self._mpz_p) else: if modulus <= 0: raise ValueError("Modulus must be positive") modulus = int(modulus) result = IntegerGMP(self._tonelli_shanks(int(self) % modulus, modulus)) return result def __iadd__(self, term): if is_native_int(term): if 0 <= term < 65536: _gmp.mpz_add_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_sub_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) return self term = IntegerGMP(term) _gmp.mpz_add(self._mpz_p, self._mpz_p, term._mpz_p) return self def __isub__(self, term): if is_native_int(term): if 0 <= term < 65536: _gmp.mpz_sub_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_add_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) return self term = IntegerGMP(term) _gmp.mpz_sub(self._mpz_p, self._mpz_p, term._mpz_p) return self def __imul__(self, term): if is_native_int(term): if 0 <= term < 65536: _gmp.mpz_mul_ui(self._mpz_p, self._mpz_p, c_ulong(term)) return self if -65535 < term < 0: _gmp.mpz_mul_ui(self._mpz_p, self._mpz_p, c_ulong(-term)) _gmp.mpz_neg(self._mpz_p, self._mpz_p) return self term = IntegerGMP(term) _gmp.mpz_mul(self._mpz_p, self._mpz_p, term._mpz_p) return self def __imod__(self, divisor): if not isinstance(divisor, IntegerGMP): divisor = IntegerGMP(divisor) comp = _gmp.mpz_cmp(divisor._mpz_p, divisor._zero_mpz_p) if comp == 0: raise ZeroDivisionError("Division by zero") if comp < 0: raise ValueError("Modulus must be positive") _gmp.mpz_mod(self._mpz_p, self._mpz_p, divisor._mpz_p) return self # Boolean/bit operations def __and__(self, term): result = IntegerGMP(0) if not isinstance(term, IntegerGMP): term = IntegerGMP(term) _gmp.mpz_and(result._mpz_p, self._mpz_p, term._mpz_p) return result def __or__(self, term): result = IntegerGMP(0) if not isinstance(term, IntegerGMP): term = IntegerGMP(term) _gmp.mpz_ior(result._mpz_p, self._mpz_p, term._mpz_p) return result def __rshift__(self, pos): result = IntegerGMP(0) if pos < 0: raise ValueError("negative shift count") if pos > 65536: if self < 0: return -1 else: return 0 _gmp.mpz_tdiv_q_2exp(result._mpz_p, self._mpz_p, c_ulong(int(pos))) return result def __irshift__(self, pos): if pos < 0: raise ValueError("negative shift count") if pos > 65536: if self < 0: return -1 else: return 0 _gmp.mpz_tdiv_q_2exp(self._mpz_p, self._mpz_p, c_ulong(int(pos))) return self def __lshift__(self, pos): result = IntegerGMP(0) if not 0 <= pos < 65536: raise ValueError("Incorrect shift count") _gmp.mpz_mul_2exp(result._mpz_p, self._mpz_p, c_ulong(int(pos))) return result def __ilshift__(self, pos): if not 0 <= pos < 65536: raise ValueError("Incorrect shift count") _gmp.mpz_mul_2exp(self._mpz_p, self._mpz_p, c_ulong(int(pos))) return self def get_bit(self, n): """Return True if the n-th bit is set to 1. Bit 0 is the least significant.""" if self < 0: raise ValueError("no bit representation for negative values") if n < 0: raise ValueError("negative bit count") if n > 65536: return 0 return bool(_gmp.mpz_tstbit(self._mpz_p, c_ulong(int(n)))) # Extra def is_odd(self): return _gmp.mpz_tstbit(self._mpz_p, 0) == 1 def is_even(self): return _gmp.mpz_tstbit(self._mpz_p, 0) == 0 def size_in_bits(self): """Return the minimum number of bits that can encode the number.""" if self < 0: raise ValueError("Conversion only valid for non-negative numbers") return _gmp.mpz_sizeinbase(self._mpz_p, 2) def size_in_bytes(self): """Return the minimum number of bytes that can encode the number.""" return (self.size_in_bits() - 1) // 8 + 1 def is_perfect_square(self): return _gmp.mpz_perfect_square_p(self._mpz_p) != 0 def fail_if_divisible_by(self, small_prime): """Raise an exception if the small prime is a divisor.""" if is_native_int(small_prime): if 0 < small_prime < 65536: if _gmp.mpz_divisible_ui_p(self._mpz_p, c_ulong(small_prime)): raise ValueError("The value is composite") return small_prime = IntegerGMP(small_prime) if _gmp.mpz_divisible_p(self._mpz_p, small_prime._mpz_p): raise ValueError("The value is composite") def multiply_accumulate(self, a, b): """Increment the number by the product of a and b.""" if not isinstance(a, IntegerGMP): a = IntegerGMP(a) if is_native_int(b): if 0 < b < 65536: _gmp.mpz_addmul_ui(self._mpz_p, a._mpz_p, c_ulong(b)) return self if -65535 < b < 0: _gmp.mpz_submul_ui(self._mpz_p, a._mpz_p, c_ulong(-b)) return self b = IntegerGMP(b) _gmp.mpz_addmul(self._mpz_p, a._mpz_p, b._mpz_p) return self def set(self, source): """Set the Integer to have the given value""" if not isinstance(source, IntegerGMP): source = IntegerGMP(source) _gmp.mpz_set(self._mpz_p, source._mpz_p) return self def inplace_inverse(self, modulus): """Compute the inverse of this number in the ring of modulo integers. Raise an exception if no inverse exists. """ if not isinstance(modulus, IntegerGMP): modulus = IntegerGMP(modulus) comp = _gmp.mpz_cmp(modulus._mpz_p, self._zero_mpz_p) if comp == 0: raise ZeroDivisionError("Modulus cannot be zero") if comp < 0: raise ValueError("Modulus must be positive") result = _gmp.mpz_invert(self._mpz_p, self._mpz_p, modulus._mpz_p) if not result: raise ValueError("No inverse value can be computed") return self def inverse(self, modulus): result = IntegerGMP(self) result.inplace_inverse(modulus) return result def gcd(self, term): """Compute the greatest common denominator between this number and another term.""" result = IntegerGMP(0) if is_native_int(term): if 0 < term < 65535: _gmp.mpz_gcd_ui(result._mpz_p, self._mpz_p, c_ulong(term)) return result term = IntegerGMP(term) _gmp.mpz_gcd(result._mpz_p, self._mpz_p, term._mpz_p) return result def lcm(self, term): """Compute the least common multiplier between this number and another term.""" result = IntegerGMP(0) if not isinstance(term, IntegerGMP): term = IntegerGMP(term) _gmp.mpz_lcm(result._mpz_p, self._mpz_p, term._mpz_p) return result @staticmethod def jacobi_symbol(a, n): """Compute the Jacobi symbol""" if not isinstance(a, IntegerGMP): a = IntegerGMP(a) if not isinstance(n, IntegerGMP): n = IntegerGMP(n) if n <= 0 or n.is_even(): raise ValueError("n must be positive odd for the Jacobi symbol") return _gmp.mpz_jacobi(a._mpz_p, n._mpz_p) # Clean-up def __del__(self): try: if self._mpz_p is not None: if self._initialized: _gmp.mpz_clear(self._mpz_p) self._mpz_p = None except AttributeError: pass