ok
Direktori : /opt/imunify360/venv/lib64/python3.11/site-packages/google/protobuf/internal/ |
Current File : //opt/imunify360/venv/lib64/python3.11/site-packages/google/protobuf/internal/python_message.py |
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # This code is meant to work on Python 2.4 and above only. # # TODO(robinson): Helpers for verbose, common checks like seeing if a # descriptor's cpp_type is CPPTYPE_MESSAGE. """Contains a metaclass and helper functions used to create protocol message classes from Descriptor objects at runtime. Recall that a metaclass is the "type" of a class. (A class is to a metaclass what an instance is to a class.) In this case, we use the GeneratedProtocolMessageType metaclass to inject all the useful functionality into the classes output by the protocol compiler at compile-time. The upshot of all this is that the real implementation details for ALL pure-Python protocol buffers are *here in this file*. """ __author__ = 'robinson@google.com (Will Robinson)' from io import BytesIO import struct import sys import weakref # We use "as" to avoid name collisions with variables. from google.protobuf.internal import api_implementation from google.protobuf.internal import containers from google.protobuf.internal import decoder from google.protobuf.internal import encoder from google.protobuf.internal import enum_type_wrapper from google.protobuf.internal import extension_dict from google.protobuf.internal import message_listener as message_listener_mod from google.protobuf.internal import type_checkers from google.protobuf.internal import well_known_types from google.protobuf.internal import wire_format from google.protobuf import descriptor as descriptor_mod from google.protobuf import message as message_mod from google.protobuf import text_format _FieldDescriptor = descriptor_mod.FieldDescriptor _AnyFullTypeName = 'google.protobuf.Any' _ExtensionDict = extension_dict._ExtensionDict class GeneratedProtocolMessageType(type): """Metaclass for protocol message classes created at runtime from Descriptors. We add implementations for all methods described in the Message class. We also create properties to allow getting/setting all fields in the protocol message. Finally, we create slots to prevent users from accidentally "setting" nonexistent fields in the protocol message, which then wouldn't get serialized / deserialized properly. The protocol compiler currently uses this metaclass to create protocol message classes at runtime. Clients can also manually create their own classes at runtime, as in this example: mydescriptor = Descriptor(.....) factory = symbol_database.Default() factory.pool.AddDescriptor(mydescriptor) MyProtoClass = factory.GetPrototype(mydescriptor) myproto_instance = MyProtoClass() myproto.foo_field = 23 ... """ # Must be consistent with the protocol-compiler code in # proto2/compiler/internal/generator.*. _DESCRIPTOR_KEY = 'DESCRIPTOR' def __new__(cls, name, bases, dictionary): """Custom allocation for runtime-generated class types. We override __new__ because this is apparently the only place where we can meaningfully set __slots__ on the class we're creating(?). (The interplay between metaclasses and slots is not very well-documented). Args: name: Name of the class (ignored, but required by the metaclass protocol). bases: Base classes of the class we're constructing. (Should be message.Message). We ignore this field, but it's required by the metaclass protocol dictionary: The class dictionary of the class we're constructing. dictionary[_DESCRIPTOR_KEY] must contain a Descriptor object describing this protocol message type. Returns: Newly-allocated class. Raises: RuntimeError: Generated code only work with python cpp extension. """ descriptor = dictionary[GeneratedProtocolMessageType._DESCRIPTOR_KEY] if isinstance(descriptor, str): raise RuntimeError('The generated code only work with python cpp ' 'extension, but it is using pure python runtime.') # If a concrete class already exists for this descriptor, don't try to # create another. Doing so will break any messages that already exist with # the existing class. # # The C++ implementation appears to have its own internal `PyMessageFactory` # to achieve similar results. # # This most commonly happens in `text_format.py` when using descriptors from # a custom pool; it calls symbol_database.Global().getPrototype() on a # descriptor which already has an existing concrete class. new_class = getattr(descriptor, '_concrete_class', None) if new_class: return new_class if descriptor.full_name in well_known_types.WKTBASES: bases += (well_known_types.WKTBASES[descriptor.full_name],) _AddClassAttributesForNestedExtensions(descriptor, dictionary) _AddSlots(descriptor, dictionary) superclass = super(GeneratedProtocolMessageType, cls) new_class = superclass.__new__(cls, name, bases, dictionary) return new_class def __init__(cls, name, bases, dictionary): """Here we perform the majority of our work on the class. We add enum getters, an __init__ method, implementations of all Message methods, and properties for all fields in the protocol type. Args: name: Name of the class (ignored, but required by the metaclass protocol). bases: Base classes of the class we're constructing. (Should be message.Message). We ignore this field, but it's required by the metaclass protocol dictionary: The class dictionary of the class we're constructing. dictionary[_DESCRIPTOR_KEY] must contain a Descriptor object describing this protocol message type. """ descriptor = dictionary[GeneratedProtocolMessageType._DESCRIPTOR_KEY] # If this is an _existing_ class looked up via `_concrete_class` in the # __new__ method above, then we don't need to re-initialize anything. existing_class = getattr(descriptor, '_concrete_class', None) if existing_class: assert existing_class is cls, ( 'Duplicate `GeneratedProtocolMessageType` created for descriptor %r' % (descriptor.full_name)) return cls._decoders_by_tag = {} if (descriptor.has_options and descriptor.GetOptions().message_set_wire_format): cls._decoders_by_tag[decoder.MESSAGE_SET_ITEM_TAG] = ( decoder.MessageSetItemDecoder(descriptor), None) # Attach stuff to each FieldDescriptor for quick lookup later on. for field in descriptor.fields: _AttachFieldHelpers(cls, field) descriptor._concrete_class = cls # pylint: disable=protected-access _AddEnumValues(descriptor, cls) _AddInitMethod(descriptor, cls) _AddPropertiesForFields(descriptor, cls) _AddPropertiesForExtensions(descriptor, cls) _AddStaticMethods(cls) _AddMessageMethods(descriptor, cls) _AddPrivateHelperMethods(descriptor, cls) superclass = super(GeneratedProtocolMessageType, cls) superclass.__init__(name, bases, dictionary) # Stateless helpers for GeneratedProtocolMessageType below. # Outside clients should not access these directly. # # I opted not to make any of these methods on the metaclass, to make it more # clear that I'm not really using any state there and to keep clients from # thinking that they have direct access to these construction helpers. def _PropertyName(proto_field_name): """Returns the name of the public property attribute which clients can use to get and (in some cases) set the value of a protocol message field. Args: proto_field_name: The protocol message field name, exactly as it appears (or would appear) in a .proto file. """ # TODO(robinson): Escape Python keywords (e.g., yield), and test this support. # nnorwitz makes my day by writing: # """ # FYI. See the keyword module in the stdlib. This could be as simple as: # # if keyword.iskeyword(proto_field_name): # return proto_field_name + "_" # return proto_field_name # """ # Kenton says: The above is a BAD IDEA. People rely on being able to use # getattr() and setattr() to reflectively manipulate field values. If we # rename the properties, then every such user has to also make sure to apply # the same transformation. Note that currently if you name a field "yield", # you can still access it just fine using getattr/setattr -- it's not even # that cumbersome to do so. # TODO(kenton): Remove this method entirely if/when everyone agrees with my # position. return proto_field_name def _AddSlots(message_descriptor, dictionary): """Adds a __slots__ entry to dictionary, containing the names of all valid attributes for this message type. Args: message_descriptor: A Descriptor instance describing this message type. dictionary: Class dictionary to which we'll add a '__slots__' entry. """ dictionary['__slots__'] = ['_cached_byte_size', '_cached_byte_size_dirty', '_fields', '_unknown_fields', '_unknown_field_set', '_is_present_in_parent', '_listener', '_listener_for_children', '__weakref__', '_oneofs'] def _IsMessageSetExtension(field): return (field.is_extension and field.containing_type.has_options and field.containing_type.GetOptions().message_set_wire_format and field.type == _FieldDescriptor.TYPE_MESSAGE and field.label == _FieldDescriptor.LABEL_OPTIONAL) def _IsMapField(field): return (field.type == _FieldDescriptor.TYPE_MESSAGE and field.message_type.has_options and field.message_type.GetOptions().map_entry) def _IsMessageMapField(field): value_type = field.message_type.fields_by_name['value'] return value_type.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE def _AttachFieldHelpers(cls, field_descriptor): is_repeated = (field_descriptor.label == _FieldDescriptor.LABEL_REPEATED) is_map_entry = _IsMapField(field_descriptor) is_packed = field_descriptor.is_packed if is_map_entry: field_encoder = encoder.MapEncoder(field_descriptor) sizer = encoder.MapSizer(field_descriptor, _IsMessageMapField(field_descriptor)) elif _IsMessageSetExtension(field_descriptor): field_encoder = encoder.MessageSetItemEncoder(field_descriptor.number) sizer = encoder.MessageSetItemSizer(field_descriptor.number) else: field_encoder = type_checkers.TYPE_TO_ENCODER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) sizer = type_checkers.TYPE_TO_SIZER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) field_descriptor._encoder = field_encoder field_descriptor._sizer = sizer field_descriptor._default_constructor = _DefaultValueConstructorForField( field_descriptor) def AddDecoder(wiretype, is_packed): tag_bytes = encoder.TagBytes(field_descriptor.number, wiretype) decode_type = field_descriptor.type if (decode_type == _FieldDescriptor.TYPE_ENUM and not field_descriptor.enum_type.is_closed): decode_type = _FieldDescriptor.TYPE_INT32 oneof_descriptor = None if field_descriptor.containing_oneof is not None: oneof_descriptor = field_descriptor if is_map_entry: is_message_map = _IsMessageMapField(field_descriptor) field_decoder = decoder.MapDecoder( field_descriptor, _GetInitializeDefaultForMap(field_descriptor), is_message_map) elif decode_type == _FieldDescriptor.TYPE_STRING: field_decoder = decoder.StringDecoder( field_descriptor.number, is_repeated, is_packed, field_descriptor, field_descriptor._default_constructor, not field_descriptor.has_presence) elif field_descriptor.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: field_decoder = type_checkers.TYPE_TO_DECODER[decode_type]( field_descriptor.number, is_repeated, is_packed, field_descriptor, field_descriptor._default_constructor) else: field_decoder = type_checkers.TYPE_TO_DECODER[decode_type]( field_descriptor.number, is_repeated, is_packed, # pylint: disable=protected-access field_descriptor, field_descriptor._default_constructor, not field_descriptor.has_presence) cls._decoders_by_tag[tag_bytes] = (field_decoder, oneof_descriptor) AddDecoder(type_checkers.FIELD_TYPE_TO_WIRE_TYPE[field_descriptor.type], False) if is_repeated and wire_format.IsTypePackable(field_descriptor.type): # To support wire compatibility of adding packed = true, add a decoder for # packed values regardless of the field's options. AddDecoder(wire_format.WIRETYPE_LENGTH_DELIMITED, True) def _AddClassAttributesForNestedExtensions(descriptor, dictionary): extensions = descriptor.extensions_by_name for extension_name, extension_field in extensions.items(): assert extension_name not in dictionary dictionary[extension_name] = extension_field def _AddEnumValues(descriptor, cls): """Sets class-level attributes for all enum fields defined in this message. Also exporting a class-level object that can name enum values. Args: descriptor: Descriptor object for this message type. cls: Class we're constructing for this message type. """ for enum_type in descriptor.enum_types: setattr(cls, enum_type.name, enum_type_wrapper.EnumTypeWrapper(enum_type)) for enum_value in enum_type.values: setattr(cls, enum_value.name, enum_value.number) def _GetInitializeDefaultForMap(field): if field.label != _FieldDescriptor.LABEL_REPEATED: raise ValueError('map_entry set on non-repeated field %s' % ( field.name)) fields_by_name = field.message_type.fields_by_name key_checker = type_checkers.GetTypeChecker(fields_by_name['key']) value_field = fields_by_name['value'] if _IsMessageMapField(field): def MakeMessageMapDefault(message): return containers.MessageMap( message._listener_for_children, value_field.message_type, key_checker, field.message_type) return MakeMessageMapDefault else: value_checker = type_checkers.GetTypeChecker(value_field) def MakePrimitiveMapDefault(message): return containers.ScalarMap( message._listener_for_children, key_checker, value_checker, field.message_type) return MakePrimitiveMapDefault def _DefaultValueConstructorForField(field): """Returns a function which returns a default value for a field. Args: field: FieldDescriptor object for this field. The returned function has one argument: message: Message instance containing this field, or a weakref proxy of same. That function in turn returns a default value for this field. The default value may refer back to |message| via a weak reference. """ if _IsMapField(field): return _GetInitializeDefaultForMap(field) if field.label == _FieldDescriptor.LABEL_REPEATED: if field.has_default_value and field.default_value != []: raise ValueError('Repeated field default value not empty list: %s' % ( field.default_value)) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: # We can't look at _concrete_class yet since it might not have # been set. (Depends on order in which we initialize the classes). message_type = field.message_type def MakeRepeatedMessageDefault(message): return containers.RepeatedCompositeFieldContainer( message._listener_for_children, field.message_type) return MakeRepeatedMessageDefault else: type_checker = type_checkers.GetTypeChecker(field) def MakeRepeatedScalarDefault(message): return containers.RepeatedScalarFieldContainer( message._listener_for_children, type_checker) return MakeRepeatedScalarDefault if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: # _concrete_class may not yet be initialized. message_type = field.message_type def MakeSubMessageDefault(message): assert getattr(message_type, '_concrete_class', None), ( 'Uninitialized concrete class found for field %r (message type %r)' % (field.full_name, message_type.full_name)) result = message_type._concrete_class() result._SetListener( _OneofListener(message, field) if field.containing_oneof is not None else message._listener_for_children) return result return MakeSubMessageDefault def MakeScalarDefault(message): # TODO(protobuf-team): This may be broken since there may not be # default_value. Combine with has_default_value somehow. return field.default_value return MakeScalarDefault def _ReraiseTypeErrorWithFieldName(message_name, field_name): """Re-raise the currently-handled TypeError with the field name added.""" exc = sys.exc_info()[1] if len(exc.args) == 1 and type(exc) is TypeError: # simple TypeError; add field name to exception message exc = TypeError('%s for field %s.%s' % (str(exc), message_name, field_name)) # re-raise possibly-amended exception with original traceback: raise exc.with_traceback(sys.exc_info()[2]) def _AddInitMethod(message_descriptor, cls): """Adds an __init__ method to cls.""" def _GetIntegerEnumValue(enum_type, value): """Convert a string or integer enum value to an integer. If the value is a string, it is converted to the enum value in enum_type with the same name. If the value is not a string, it's returned as-is. (No conversion or bounds-checking is done.) """ if isinstance(value, str): try: return enum_type.values_by_name[value].number except KeyError: raise ValueError('Enum type %s: unknown label "%s"' % ( enum_type.full_name, value)) return value def init(self, **kwargs): self._cached_byte_size = 0 self._cached_byte_size_dirty = len(kwargs) > 0 self._fields = {} # Contains a mapping from oneof field descriptors to the descriptor # of the currently set field in that oneof field. self._oneofs = {} # _unknown_fields is () when empty for efficiency, and will be turned into # a list if fields are added. self._unknown_fields = () # _unknown_field_set is None when empty for efficiency, and will be # turned into UnknownFieldSet struct if fields are added. self._unknown_field_set = None # pylint: disable=protected-access self._is_present_in_parent = False self._listener = message_listener_mod.NullMessageListener() self._listener_for_children = _Listener(self) for field_name, field_value in kwargs.items(): field = _GetFieldByName(message_descriptor, field_name) if field is None: raise TypeError('%s() got an unexpected keyword argument "%s"' % (message_descriptor.name, field_name)) if field_value is None: # field=None is the same as no field at all. continue if field.label == _FieldDescriptor.LABEL_REPEATED: copy = field._default_constructor(self) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: # Composite if _IsMapField(field): if _IsMessageMapField(field): for key in field_value: copy[key].MergeFrom(field_value[key]) else: copy.update(field_value) else: for val in field_value: if isinstance(val, dict): copy.add(**val) else: copy.add().MergeFrom(val) else: # Scalar if field.cpp_type == _FieldDescriptor.CPPTYPE_ENUM: field_value = [_GetIntegerEnumValue(field.enum_type, val) for val in field_value] copy.extend(field_value) self._fields[field] = copy elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: copy = field._default_constructor(self) new_val = field_value if isinstance(field_value, dict): new_val = field.message_type._concrete_class(**field_value) try: copy.MergeFrom(new_val) except TypeError: _ReraiseTypeErrorWithFieldName(message_descriptor.name, field_name) self._fields[field] = copy else: if field.cpp_type == _FieldDescriptor.CPPTYPE_ENUM: field_value = _GetIntegerEnumValue(field.enum_type, field_value) try: setattr(self, field_name, field_value) except TypeError: _ReraiseTypeErrorWithFieldName(message_descriptor.name, field_name) init.__module__ = None init.__doc__ = None cls.__init__ = init def _GetFieldByName(message_descriptor, field_name): """Returns a field descriptor by field name. Args: message_descriptor: A Descriptor describing all fields in message. field_name: The name of the field to retrieve. Returns: The field descriptor associated with the field name. """ try: return message_descriptor.fields_by_name[field_name] except KeyError: raise ValueError('Protocol message %s has no "%s" field.' % (message_descriptor.name, field_name)) def _AddPropertiesForFields(descriptor, cls): """Adds properties for all fields in this protocol message type.""" for field in descriptor.fields: _AddPropertiesForField(field, cls) if descriptor.is_extendable: # _ExtensionDict is just an adaptor with no state so we allocate a new one # every time it is accessed. cls.Extensions = property(lambda self: _ExtensionDict(self)) def _AddPropertiesForField(field, cls): """Adds a public property for a protocol message field. Clients can use this property to get and (in the case of non-repeated scalar fields) directly set the value of a protocol message field. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ # Catch it if we add other types that we should # handle specially here. assert _FieldDescriptor.MAX_CPPTYPE == 10 constant_name = field.name.upper() + '_FIELD_NUMBER' setattr(cls, constant_name, field.number) if field.label == _FieldDescriptor.LABEL_REPEATED: _AddPropertiesForRepeatedField(field, cls) elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: _AddPropertiesForNonRepeatedCompositeField(field, cls) else: _AddPropertiesForNonRepeatedScalarField(field, cls) class _FieldProperty(property): __slots__ = ('DESCRIPTOR',) def __init__(self, descriptor, getter, setter, doc): property.__init__(self, getter, setter, doc=doc) self.DESCRIPTOR = descriptor def _AddPropertiesForRepeatedField(field, cls): """Adds a public property for a "repeated" protocol message field. Clients can use this property to get the value of the field, which will be either a RepeatedScalarFieldContainer or RepeatedCompositeFieldContainer (see below). Note that when clients add values to these containers, we perform type-checking in the case of repeated scalar fields, and we also set any necessary "has" bits as a side-effect. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) def getter(self): field_value = self._fields.get(field) if field_value is None: # Construct a new object to represent this field. field_value = field._default_constructor(self) # Atomically check if another thread has preempted us and, if not, swap # in the new object we just created. If someone has preempted us, we # take that object and discard ours. # WARNING: We are relying on setdefault() being atomic. This is true # in CPython but we haven't investigated others. This warning appears # in several other locations in this file. field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name # We define a setter just so we can throw an exception with a more # helpful error message. def setter(self, new_value): raise AttributeError('Assignment not allowed to repeated field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, _FieldProperty(field, getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedScalarField(field, cls): """Adds a public property for a nonrepeated, scalar protocol message field. Clients can use this property to get and directly set the value of the field. Note that when the client sets the value of a field by using this property, all necessary "has" bits are set as a side-effect, and we also perform type-checking. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) type_checker = type_checkers.GetTypeChecker(field) default_value = field.default_value def getter(self): # TODO(protobuf-team): This may be broken since there may not be # default_value. Combine with has_default_value somehow. return self._fields.get(field, default_value) getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def field_setter(self, new_value): # pylint: disable=protected-access # Testing the value for truthiness captures all of the proto3 defaults # (0, 0.0, enum 0, and False). try: new_value = type_checker.CheckValue(new_value) except TypeError as e: raise TypeError( 'Cannot set %s to %.1024r: %s' % (field.full_name, new_value, e)) if not field.has_presence and not new_value: self._fields.pop(field, None) else: self._fields[field] = new_value # Check _cached_byte_size_dirty inline to improve performance, since scalar # setters are called frequently. if not self._cached_byte_size_dirty: self._Modified() if field.containing_oneof: def setter(self, new_value): field_setter(self, new_value) self._UpdateOneofState(field) else: setter = field_setter setter.__module__ = None setter.__doc__ = 'Setter for %s.' % proto_field_name # Add a property to encapsulate the getter/setter. doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, _FieldProperty(field, getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedCompositeField(field, cls): """Adds a public property for a nonrepeated, composite protocol message field. A composite field is a "group" or "message" field. Clients can use this property to get the value of the field, but cannot assign to the property directly. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ # TODO(robinson): Remove duplication with similar method # for non-repeated scalars. proto_field_name = field.name property_name = _PropertyName(proto_field_name) def getter(self): field_value = self._fields.get(field) if field_value is None: # Construct a new object to represent this field. field_value = field._default_constructor(self) # Atomically check if another thread has preempted us and, if not, swap # in the new object we just created. If someone has preempted us, we # take that object and discard ours. # WARNING: We are relying on setdefault() being atomic. This is true # in CPython but we haven't investigated others. This warning appears # in several other locations in this file. field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name # We define a setter just so we can throw an exception with a more # helpful error message. def setter(self, new_value): raise AttributeError('Assignment not allowed to composite field ' '"%s" in protocol message object.' % proto_field_name) # Add a property to encapsulate the getter. doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, _FieldProperty(field, getter, setter, doc=doc)) def _AddPropertiesForExtensions(descriptor, cls): """Adds properties for all fields in this protocol message type.""" extensions = descriptor.extensions_by_name for extension_name, extension_field in extensions.items(): constant_name = extension_name.upper() + '_FIELD_NUMBER' setattr(cls, constant_name, extension_field.number) # TODO(amauryfa): Migrate all users of these attributes to functions like # pool.FindExtensionByNumber(descriptor). if descriptor.file is not None: # TODO(amauryfa): Use cls.MESSAGE_FACTORY.pool when available. pool = descriptor.file.pool cls._extensions_by_number = pool._extensions_by_number[descriptor] cls._extensions_by_name = pool._extensions_by_name[descriptor] def _AddStaticMethods(cls): # TODO(robinson): This probably needs to be thread-safe(?) def RegisterExtension(field_descriptor): field_descriptor.containing_type = cls.DESCRIPTOR # TODO(amauryfa): Use cls.MESSAGE_FACTORY.pool when available. # pylint: disable=protected-access cls.DESCRIPTOR.file.pool._AddExtensionDescriptor(field_descriptor) _AttachFieldHelpers(cls, field_descriptor) cls.RegisterExtension = staticmethod(RegisterExtension) def FromString(s): message = cls() message.MergeFromString(s) return message cls.FromString = staticmethod(FromString) def _IsPresent(item): """Given a (FieldDescriptor, value) tuple from _fields, return true if the value should be included in the list returned by ListFields().""" if item[0].label == _FieldDescriptor.LABEL_REPEATED: return bool(item[1]) elif item[0].cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: return item[1]._is_present_in_parent else: return True def _AddListFieldsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ListFields(self): all_fields = [item for item in self._fields.items() if _IsPresent(item)] all_fields.sort(key = lambda item: item[0].number) return all_fields cls.ListFields = ListFields def _AddHasFieldMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" hassable_fields = {} for field in message_descriptor.fields: if field.label == _FieldDescriptor.LABEL_REPEATED: continue # For proto3, only submessages and fields inside a oneof have presence. if not field.has_presence: continue hassable_fields[field.name] = field # Has methods are supported for oneof descriptors. for oneof in message_descriptor.oneofs: hassable_fields[oneof.name] = oneof def HasField(self, field_name): try: field = hassable_fields[field_name] except KeyError as exc: raise ValueError('Protocol message %s has no non-repeated field "%s" ' 'nor has presence is not available for this field.' % ( message_descriptor.full_name, field_name)) from exc if isinstance(field, descriptor_mod.OneofDescriptor): try: return HasField(self, self._oneofs[field].name) except KeyError: return False else: if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(field) return value is not None and value._is_present_in_parent else: return field in self._fields cls.HasField = HasField def _AddClearFieldMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ClearField(self, field_name): try: field = message_descriptor.fields_by_name[field_name] except KeyError: try: field = message_descriptor.oneofs_by_name[field_name] if field in self._oneofs: field = self._oneofs[field] else: return except KeyError: raise ValueError('Protocol message %s has no "%s" field.' % (message_descriptor.name, field_name)) if field in self._fields: # To match the C++ implementation, we need to invalidate iterators # for map fields when ClearField() happens. if hasattr(self._fields[field], 'InvalidateIterators'): self._fields[field].InvalidateIterators() # Note: If the field is a sub-message, its listener will still point # at us. That's fine, because the worst than can happen is that it # will call _Modified() and invalidate our byte size. Big deal. del self._fields[field] if self._oneofs.get(field.containing_oneof, None) is field: del self._oneofs[field.containing_oneof] # Always call _Modified() -- even if nothing was changed, this is # a mutating method, and thus calling it should cause the field to become # present in the parent message. self._Modified() cls.ClearField = ClearField def _AddClearExtensionMethod(cls): """Helper for _AddMessageMethods().""" def ClearExtension(self, field_descriptor): extension_dict._VerifyExtensionHandle(self, field_descriptor) # Similar to ClearField(), above. if field_descriptor in self._fields: del self._fields[field_descriptor] self._Modified() cls.ClearExtension = ClearExtension def _AddHasExtensionMethod(cls): """Helper for _AddMessageMethods().""" def HasExtension(self, field_descriptor): extension_dict._VerifyExtensionHandle(self, field_descriptor) if field_descriptor.label == _FieldDescriptor.LABEL_REPEATED: raise KeyError('"%s" is repeated.' % field_descriptor.full_name) if field_descriptor.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(field_descriptor) return value is not None and value._is_present_in_parent else: return field_descriptor in self._fields cls.HasExtension = HasExtension def _InternalUnpackAny(msg): """Unpacks Any message and returns the unpacked message. This internal method is different from public Any Unpack method which takes the target message as argument. _InternalUnpackAny method does not have target message type and need to find the message type in descriptor pool. Args: msg: An Any message to be unpacked. Returns: The unpacked message. """ # TODO(amauryfa): Don't use the factory of generated messages. # To make Any work with custom factories, use the message factory of the # parent message. # pylint: disable=g-import-not-at-top from google.protobuf import symbol_database factory = symbol_database.Default() type_url = msg.type_url if not type_url: return None # TODO(haberman): For now we just strip the hostname. Better logic will be # required. type_name = type_url.split('/')[-1] descriptor = factory.pool.FindMessageTypeByName(type_name) if descriptor is None: return None message_class = factory.GetPrototype(descriptor) message = message_class() message.ParseFromString(msg.value) return message def _AddEqualsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __eq__(self, other): if (not isinstance(other, message_mod.Message) or other.DESCRIPTOR != self.DESCRIPTOR): return False if self is other: return True if self.DESCRIPTOR.full_name == _AnyFullTypeName: any_a = _InternalUnpackAny(self) any_b = _InternalUnpackAny(other) if any_a and any_b: return any_a == any_b if not self.ListFields() == other.ListFields(): return False # TODO(jieluo): Fix UnknownFieldSet to consider MessageSet extensions, # then use it for the comparison. unknown_fields = list(self._unknown_fields) unknown_fields.sort() other_unknown_fields = list(other._unknown_fields) other_unknown_fields.sort() return unknown_fields == other_unknown_fields cls.__eq__ = __eq__ def _AddStrMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __str__(self): return text_format.MessageToString(self) cls.__str__ = __str__ def _AddReprMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __repr__(self): return text_format.MessageToString(self) cls.__repr__ = __repr__ def _AddUnicodeMethod(unused_message_descriptor, cls): """Helper for _AddMessageMethods().""" def __unicode__(self): return text_format.MessageToString(self, as_utf8=True).decode('utf-8') cls.__unicode__ = __unicode__ def _BytesForNonRepeatedElement(value, field_number, field_type): """Returns the number of bytes needed to serialize a non-repeated element. The returned byte count includes space for tag information and any other additional space associated with serializing value. Args: value: Value we're serializing. field_number: Field number of this value. (Since the field number is stored as part of a varint-encoded tag, this has an impact on the total bytes required to serialize the value). field_type: The type of the field. One of the TYPE_* constants within FieldDescriptor. """ try: fn = type_checkers.TYPE_TO_BYTE_SIZE_FN[field_type] return fn(field_number, value) except KeyError: raise message_mod.EncodeError('Unrecognized field type: %d' % field_type) def _AddByteSizeMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ByteSize(self): if not self._cached_byte_size_dirty: return self._cached_byte_size size = 0 descriptor = self.DESCRIPTOR if descriptor.GetOptions().map_entry: # Fields of map entry should always be serialized. size = descriptor.fields_by_name['key']._sizer(self.key) size += descriptor.fields_by_name['value']._sizer(self.value) else: for field_descriptor, field_value in self.ListFields(): size += field_descriptor._sizer(field_value) for tag_bytes, value_bytes in self._unknown_fields: size += len(tag_bytes) + len(value_bytes) self._cached_byte_size = size self._cached_byte_size_dirty = False self._listener_for_children.dirty = False return size cls.ByteSize = ByteSize def _AddSerializeToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def SerializeToString(self, **kwargs): # Check if the message has all of its required fields set. if not self.IsInitialized(): raise message_mod.EncodeError( 'Message %s is missing required fields: %s' % ( self.DESCRIPTOR.full_name, ','.join(self.FindInitializationErrors()))) return self.SerializePartialToString(**kwargs) cls.SerializeToString = SerializeToString def _AddSerializePartialToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def SerializePartialToString(self, **kwargs): out = BytesIO() self._InternalSerialize(out.write, **kwargs) return out.getvalue() cls.SerializePartialToString = SerializePartialToString def InternalSerialize(self, write_bytes, deterministic=None): if deterministic is None: deterministic = ( api_implementation.IsPythonDefaultSerializationDeterministic()) else: deterministic = bool(deterministic) descriptor = self.DESCRIPTOR if descriptor.GetOptions().map_entry: # Fields of map entry should always be serialized. descriptor.fields_by_name['key']._encoder( write_bytes, self.key, deterministic) descriptor.fields_by_name['value']._encoder( write_bytes, self.value, deterministic) else: for field_descriptor, field_value in self.ListFields(): field_descriptor._encoder(write_bytes, field_value, deterministic) for tag_bytes, value_bytes in self._unknown_fields: write_bytes(tag_bytes) write_bytes(value_bytes) cls._InternalSerialize = InternalSerialize def _AddMergeFromStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def MergeFromString(self, serialized): serialized = memoryview(serialized) length = len(serialized) try: if self._InternalParse(serialized, 0, length) != length: # The only reason _InternalParse would return early is if it # encountered an end-group tag. raise message_mod.DecodeError('Unexpected end-group tag.') except (IndexError, TypeError): # Now ord(buf[p:p+1]) == ord('') gets TypeError. raise message_mod.DecodeError('Truncated message.') except struct.error as e: raise message_mod.DecodeError(e) return length # Return this for legacy reasons. cls.MergeFromString = MergeFromString local_ReadTag = decoder.ReadTag local_SkipField = decoder.SkipField decoders_by_tag = cls._decoders_by_tag def InternalParse(self, buffer, pos, end): """Create a message from serialized bytes. Args: self: Message, instance of the proto message object. buffer: memoryview of the serialized data. pos: int, position to start in the serialized data. end: int, end position of the serialized data. Returns: Message object. """ # Guard against internal misuse, since this function is called internally # quite extensively, and its easy to accidentally pass bytes. assert isinstance(buffer, memoryview) self._Modified() field_dict = self._fields # pylint: disable=protected-access unknown_field_set = self._unknown_field_set while pos != end: (tag_bytes, new_pos) = local_ReadTag(buffer, pos) field_decoder, field_desc = decoders_by_tag.get(tag_bytes, (None, None)) if field_decoder is None: if not self._unknown_fields: # pylint: disable=protected-access self._unknown_fields = [] # pylint: disable=protected-access if unknown_field_set is None: # pylint: disable=protected-access self._unknown_field_set = containers.UnknownFieldSet() # pylint: disable=protected-access unknown_field_set = self._unknown_field_set # pylint: disable=protected-access (tag, _) = decoder._DecodeVarint(tag_bytes, 0) field_number, wire_type = wire_format.UnpackTag(tag) if field_number == 0: raise message_mod.DecodeError('Field number 0 is illegal.') # TODO(jieluo): remove old_pos. old_pos = new_pos (data, new_pos) = decoder._DecodeUnknownField( buffer, new_pos, wire_type) # pylint: disable=protected-access if new_pos == -1: return pos # pylint: disable=protected-access unknown_field_set._add(field_number, wire_type, data) # TODO(jieluo): remove _unknown_fields. new_pos = local_SkipField(buffer, old_pos, end, tag_bytes) if new_pos == -1: return pos self._unknown_fields.append( (tag_bytes, buffer[old_pos:new_pos].tobytes())) pos = new_pos else: pos = field_decoder(buffer, new_pos, end, self, field_dict) if field_desc: self._UpdateOneofState(field_desc) return pos cls._InternalParse = InternalParse def _AddIsInitializedMethod(message_descriptor, cls): """Adds the IsInitialized and FindInitializationError methods to the protocol message class.""" required_fields = [field for field in message_descriptor.fields if field.label == _FieldDescriptor.LABEL_REQUIRED] def IsInitialized(self, errors=None): """Checks if all required fields of a message are set. Args: errors: A list which, if provided, will be populated with the field paths of all missing required fields. Returns: True iff the specified message has all required fields set. """ # Performance is critical so we avoid HasField() and ListFields(). for field in required_fields: if (field not in self._fields or (field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE and not self._fields[field]._is_present_in_parent)): if errors is not None: errors.extend(self.FindInitializationErrors()) return False for field, value in list(self._fields.items()): # dict can change size! if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.label == _FieldDescriptor.LABEL_REPEATED: if (field.message_type.has_options and field.message_type.GetOptions().map_entry): continue for element in value: if not element.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False elif value._is_present_in_parent and not value.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False return True cls.IsInitialized = IsInitialized def FindInitializationErrors(self): """Finds required fields which are not initialized. Returns: A list of strings. Each string is a path to an uninitialized field from the top-level message, e.g. "foo.bar[5].baz". """ errors = [] # simplify things for field in required_fields: if not self.HasField(field.name): errors.append(field.name) for field, value in self.ListFields(): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.is_extension: name = '(%s)' % field.full_name else: name = field.name if _IsMapField(field): if _IsMessageMapField(field): for key in value: element = value[key] prefix = '%s[%s].' % (name, key) sub_errors = element.FindInitializationErrors() errors += [prefix + error for error in sub_errors] else: # ScalarMaps can't have any initialization errors. pass elif field.label == _FieldDescriptor.LABEL_REPEATED: for i in range(len(value)): element = value[i] prefix = '%s[%d].' % (name, i) sub_errors = element.FindInitializationErrors() errors += [prefix + error for error in sub_errors] else: prefix = name + '.' sub_errors = value.FindInitializationErrors() errors += [prefix + error for error in sub_errors] return errors cls.FindInitializationErrors = FindInitializationErrors def _FullyQualifiedClassName(klass): module = klass.__module__ name = getattr(klass, '__qualname__', klass.__name__) if module in (None, 'builtins', '__builtin__'): return name return module + '.' + name def _AddMergeFromMethod(cls): LABEL_REPEATED = _FieldDescriptor.LABEL_REPEATED CPPTYPE_MESSAGE = _FieldDescriptor.CPPTYPE_MESSAGE def MergeFrom(self, msg): if not isinstance(msg, cls): raise TypeError( 'Parameter to MergeFrom() must be instance of same class: ' 'expected %s got %s.' % (_FullyQualifiedClassName(cls), _FullyQualifiedClassName(msg.__class__))) assert msg is not self self._Modified() fields = self._fields for field, value in msg._fields.items(): if field.label == LABEL_REPEATED: field_value = fields.get(field) if field_value is None: # Construct a new object to represent this field. field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) elif field.cpp_type == CPPTYPE_MESSAGE: if value._is_present_in_parent: field_value = fields.get(field) if field_value is None: # Construct a new object to represent this field. field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) else: self._fields[field] = value if field.containing_oneof: self._UpdateOneofState(field) if msg._unknown_fields: if not self._unknown_fields: self._unknown_fields = [] self._unknown_fields.extend(msg._unknown_fields) # pylint: disable=protected-access if self._unknown_field_set is None: self._unknown_field_set = containers.UnknownFieldSet() self._unknown_field_set._extend(msg._unknown_field_set) cls.MergeFrom = MergeFrom def _AddWhichOneofMethod(message_descriptor, cls): def WhichOneof(self, oneof_name): """Returns the name of the currently set field inside a oneof, or None.""" try: field = message_descriptor.oneofs_by_name[oneof_name] except KeyError: raise ValueError( 'Protocol message has no oneof "%s" field.' % oneof_name) nested_field = self._oneofs.get(field, None) if nested_field is not None and self.HasField(nested_field.name): return nested_field.name else: return None cls.WhichOneof = WhichOneof def _Clear(self): # Clear fields. self._fields = {} self._unknown_fields = () # pylint: disable=protected-access if self._unknown_field_set is not None: self._unknown_field_set._clear() self._unknown_field_set = None self._oneofs = {} self._Modified() def _UnknownFields(self): if self._unknown_field_set is None: # pylint: disable=protected-access # pylint: disable=protected-access self._unknown_field_set = containers.UnknownFieldSet() return self._unknown_field_set # pylint: disable=protected-access def _DiscardUnknownFields(self): self._unknown_fields = [] self._unknown_field_set = None # pylint: disable=protected-access for field, value in self.ListFields(): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if _IsMapField(field): if _IsMessageMapField(field): for key in value: value[key].DiscardUnknownFields() elif field.label == _FieldDescriptor.LABEL_REPEATED: for sub_message in value: sub_message.DiscardUnknownFields() else: value.DiscardUnknownFields() def _SetListener(self, listener): if listener is None: self._listener = message_listener_mod.NullMessageListener() else: self._listener = listener def _AddMessageMethods(message_descriptor, cls): """Adds implementations of all Message methods to cls.""" _AddListFieldsMethod(message_descriptor, cls) _AddHasFieldMethod(message_descriptor, cls) _AddClearFieldMethod(message_descriptor, cls) if message_descriptor.is_extendable: _AddClearExtensionMethod(cls) _AddHasExtensionMethod(cls) _AddEqualsMethod(message_descriptor, cls) _AddStrMethod(message_descriptor, cls) _AddReprMethod(message_descriptor, cls) _AddUnicodeMethod(message_descriptor, cls) _AddByteSizeMethod(message_descriptor, cls) _AddSerializeToStringMethod(message_descriptor, cls) _AddSerializePartialToStringMethod(message_descriptor, cls) _AddMergeFromStringMethod(message_descriptor, cls) _AddIsInitializedMethod(message_descriptor, cls) _AddMergeFromMethod(cls) _AddWhichOneofMethod(message_descriptor, cls) # Adds methods which do not depend on cls. cls.Clear = _Clear cls.UnknownFields = _UnknownFields cls.DiscardUnknownFields = _DiscardUnknownFields cls._SetListener = _SetListener def _AddPrivateHelperMethods(message_descriptor, cls): """Adds implementation of private helper methods to cls.""" def Modified(self): """Sets the _cached_byte_size_dirty bit to true, and propagates this to our listener iff this was a state change. """ # Note: Some callers check _cached_byte_size_dirty before calling # _Modified() as an extra optimization. So, if this method is ever # changed such that it does stuff even when _cached_byte_size_dirty is # already true, the callers need to be updated. if not self._cached_byte_size_dirty: self._cached_byte_size_dirty = True self._listener_for_children.dirty = True self._is_present_in_parent = True self._listener.Modified() def _UpdateOneofState(self, field): """Sets field as the active field in its containing oneof. Will also delete currently active field in the oneof, if it is different from the argument. Does not mark the message as modified. """ other_field = self._oneofs.setdefault(field.containing_oneof, field) if other_field is not field: del self._fields[other_field] self._oneofs[field.containing_oneof] = field cls._Modified = Modified cls.SetInParent = Modified cls._UpdateOneofState = _UpdateOneofState class _Listener(object): """MessageListener implementation that a parent message registers with its child message. In order to support semantics like: foo.bar.baz.moo = 23 assert foo.HasField('bar') ...child objects must have back references to their parents. This helper class is at the heart of this support. """ def __init__(self, parent_message): """Args: parent_message: The message whose _Modified() method we should call when we receive Modified() messages. """ # This listener establishes a back reference from a child (contained) object # to its parent (containing) object. We make this a weak reference to avoid # creating cyclic garbage when the client finishes with the 'parent' object # in the tree. if isinstance(parent_message, weakref.ProxyType): self._parent_message_weakref = parent_message else: self._parent_message_weakref = weakref.proxy(parent_message) # As an optimization, we also indicate directly on the listener whether # or not the parent message is dirty. This way we can avoid traversing # up the tree in the common case. self.dirty = False def Modified(self): if self.dirty: return try: # Propagate the signal to our parents iff this is the first field set. self._parent_message_weakref._Modified() except ReferenceError: # We can get here if a client has kept a reference to a child object, # and is now setting a field on it, but the child's parent has been # garbage-collected. This is not an error. pass class _OneofListener(_Listener): """Special listener implementation for setting composite oneof fields.""" def __init__(self, parent_message, field): """Args: parent_message: The message whose _Modified() method we should call when we receive Modified() messages. field: The descriptor of the field being set in the parent message. """ super(_OneofListener, self).__init__(parent_message) self._field = field def Modified(self): """Also updates the state of the containing oneof in the parent message.""" try: self._parent_message_weakref._UpdateOneofState(self._field) super(_OneofListener, self).Modified() except ReferenceError: pass