ok
Direktori : /proc/thread-self/root/proc/self/root/proc/self/root/usr/include/mysql/server/private/ |
Current File : //proc/thread-self/root/proc/self/root/proc/self/root/usr/include/mysql/server/private/structs.h |
#ifndef STRUCTS_INCLUDED #define STRUCTS_INCLUDED /* Copyright (c) 2000, 2010, Oracle and/or its affiliates. Copyright (c) 2009, 2019, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */ /* The old structures from unireg */ #include "sql_plugin.h" /* plugin_ref */ #include "sql_const.h" /* MAX_REFLENGTH */ #include "my_time.h" /* enum_mysql_timestamp_type */ #include "thr_lock.h" /* thr_lock_type */ #include "my_base.h" /* ha_rows, ha_key_alg */ #include <mysql_com.h> /* USERNAME_LENGTH */ #include "sql_bitmap.h" struct TABLE; class Type_handler; class Field; class Index_statistics; struct Lex_ident_cli_st; class THD; /* Array index type for table.field[] */ typedef uint16 field_index_t; typedef struct st_date_time_format { uchar positions[8]; char time_separator; /* Separator between hour and minute */ uint flag; /* For future */ LEX_CSTRING format; } DATE_TIME_FORMAT; typedef struct st_keyfile_info { /* used with ha_info() */ uchar ref[MAX_REFLENGTH]; /* Pointer to current row */ uchar dupp_ref[MAX_REFLENGTH]; /* Pointer to dupp row */ uint ref_length; /* Length of ref (1-8) */ uint block_size; /* index block size */ File filenr; /* (uniq) filenr for table */ ha_rows records; /* Records i datafilen */ ha_rows deleted; /* Deleted records */ ulonglong data_file_length; /* Length off data file */ ulonglong max_data_file_length; /* Length off data file */ ulonglong index_file_length; ulonglong max_index_file_length; ulonglong delete_length; /* Free bytes */ ulonglong auto_increment_value; int errkey,sortkey; /* Last errorkey and sorted by */ time_t create_time; /* When table was created */ time_t check_time; time_t update_time; ulong mean_rec_length; /* physical reclength */ } KEYFILE_INFO; typedef struct st_key_part_info { /* Info about a key part */ Field *field; /* the Field object for the indexed prefix of the original table Field. NOT necessarily the original Field */ uint offset; /* Offset in record (from 0) */ uint null_offset; /* Offset to null_bit in record */ /* Length of key part in bytes, excluding NULL flag and length bytes */ uint length; /* Number of bytes required to store the keypart value. This may be different from the "length" field as it also counts - possible NULL-flag byte (see HA_KEY_NULL_LENGTH) - possible HA_KEY_BLOB_LENGTH bytes needed to store actual value length. */ uint store_length; uint16 key_type; field_index_t fieldnr; /* Fieldnr begins counting from 1 */ uint16 key_part_flag; /* 0 or HA_REVERSE_SORT */ uint8 type; uint8 null_bit; /* Position to null_bit */ } KEY_PART_INFO ; class engine_option_value; struct ha_index_option_struct; typedef struct st_key { uint key_length; /* total length of user defined key parts */ ulong flags; /* dupp key and pack flags */ uint user_defined_key_parts; /* How many key_parts */ uint usable_key_parts; /* Should normally be = user_defined_key_parts */ uint ext_key_parts; /* Number of key parts in extended key */ ulong ext_key_flags; /* Flags for extended key */ /* Parts of primary key that are in the extension of this index. Example: if this structure describes idx1, which is defined as INDEX idx1 (pk2, col2) and pk is defined as: PRIMARY KEY (pk1, pk2) then pk1 is in the extension idx1, ext_key_part_map.is_set(0) == true pk2 is explicitly present in idx1, it is not in the extension, so ext_key_part_map.is_set(1) == false */ key_part_map ext_key_part_map; /* Bitmap of indexes having common parts with this index (only key parts from key definitions are taken into account) */ key_map overlapped; /* Set of keys constraint correlated with this key */ key_map constraint_correlated; LEX_CSTRING name; uint block_size; enum ha_key_alg algorithm; /* The flag is on if statistical data for the index prefixes has to be taken from the system statistical tables. */ bool is_statistics_from_stat_tables; /* Note that parser is used when the table is opened for use, and parser_name is used when the table is being created. */ union { plugin_ref parser; /* Fulltext [pre]parser */ LEX_CSTRING *parser_name; /* Fulltext [pre]parser name */ }; KEY_PART_INFO *key_part; /* Unique name for cache; db + \0 + table_name + \0 + key_name + \0 */ uchar *cache_name; /* Array of AVG(#records with the same field value) for 1st ... Nth key part. 0 means 'not known'. For temporary heap tables this member is NULL. */ ulong *rec_per_key; /* This structure is used for statistical data on the index that has been read from the statistical table index_stat */ Index_statistics *read_stats; /* This structure is used for statistical data on the index that is collected by the function collect_statistics_for_table */ Index_statistics *collected_stats; TABLE *table; LEX_CSTRING comment; /** reference to the list of options or NULL */ engine_option_value *option_list; ha_index_option_struct *option_struct; /* structure with parsed options */ double actual_rec_per_key(uint i) const; bool without_overlaps; /* TRUE if index needs to be ignored */ bool is_ignored; } KEY; struct st_join_table; typedef struct st_reginfo { /* Extra info about reg */ struct st_join_table *join_tab; /* Used by SELECT() */ enum thr_lock_type lock_type; /* How database is used */ bool skip_locked; bool not_exists_optimize; /* TRUE <=> range optimizer found that there is no rows satisfying table conditions. */ bool impossible_range; } REGINFO; /* Originally MySQL used MYSQL_TIME structure inside server only, but since 4.1 it's exported to user in the new client API. Define aliases for new names to keep existing code simple. */ typedef enum enum_mysql_timestamp_type timestamp_type; typedef struct { ulong year,month,day,hour; ulonglong minute,second,second_part; bool neg; } INTERVAL; typedef struct st_known_date_time_format { const char *format_name; const char *date_format; const char *datetime_format; const char *time_format; } KNOWN_DATE_TIME_FORMAT; extern const char *show_comp_option_name[]; typedef int *(*update_var)(THD *, struct st_mysql_show_var *); struct USER_AUTH : public Sql_alloc { LEX_CSTRING plugin, auth_str, pwtext; USER_AUTH *next; USER_AUTH() : next(NULL) { plugin.str= auth_str.str= ""; pwtext.str= NULL; plugin.length= auth_str.length= pwtext.length= 0; } }; struct AUTHID { LEX_CSTRING user, host; void init() { memset(this, 0, sizeof(*this)); } void copy(MEM_ROOT *root, const LEX_CSTRING *usr, const LEX_CSTRING *host); bool is_role() const { return user.str[0] && !host.str[0]; } void set_lex_string(LEX_CSTRING *l, char *buf) { if (is_role()) *l= user; else { l->str= buf; l->length= strxmov(buf, user.str, "@", host.str, NullS) - buf; } } void parse(const char *str, size_t length); bool read_from_mysql_proc_row(THD *thd, TABLE *table); }; struct LEX_USER: public AUTHID { USER_AUTH *auth; bool has_auth() { return auth && (auth->plugin.length || auth->auth_str.length || auth->pwtext.length); } }; /* This structure specifies the maximum amount of resources which can be consumed by each account. Zero value of a member means there is no limit. */ typedef struct user_resources { /* Maximum number of queries/statements per hour. */ uint questions; /* Maximum number of updating statements per hour (which statements are updating is defined by sql_command_flags array). */ uint updates; /* Maximum number of connections established per hour. */ uint conn_per_hour; /* Maximum number of concurrent connections. If -1 then no new connections allowed */ int user_conn; /* Max query timeout */ double max_statement_time; /* Values of this enum and specified_limits member are used by the parser to store which user limits were specified in GRANT statement. */ enum {QUERIES_PER_HOUR= 1, UPDATES_PER_HOUR= 2, CONNECTIONS_PER_HOUR= 4, USER_CONNECTIONS= 8, MAX_STATEMENT_TIME= 16}; uint specified_limits; } USER_RESOURCES; /* This structure is used for counting resources consumed and for checking them against specified user limits. */ typedef struct user_conn { /* Pointer to user+host key (pair separated by '\0') defining the entity for which resources are counted (By default it is user account thus priv_user/priv_host pair is used. If --old-style-user-limits option is enabled, resources are counted for each user+host separately). */ char *user; /* Pointer to host part of the key. */ char *host; /** The moment of time when per hour counters were reset last time (i.e. start of "hour" for conn_per_hour, updates, questions counters). */ ulonglong reset_utime; /* Total length of the key. */ uint len; /* Current amount of concurrent connections for this account. */ int connections; /* Current number of connections per hour, number of updating statements per hour and total number of statements per hour for this account. */ uint conn_per_hour, updates, questions; /* Maximum amount of resources which account is allowed to consume. */ USER_RESOURCES user_resources; } USER_CONN; typedef struct st_user_stats { char user[MY_MAX(USERNAME_LENGTH, LIST_PROCESS_HOST_LEN) + 1]; // Account name the user is mapped to when this is a user from mapped_user. // Otherwise, the same value as user. char priv_user[MY_MAX(USERNAME_LENGTH, LIST_PROCESS_HOST_LEN) + 1]; uint user_name_length; uint total_connections; uint total_ssl_connections; uint concurrent_connections; time_t connected_time; // in seconds ha_rows rows_read, rows_sent; ha_rows rows_updated, rows_deleted, rows_inserted; ulonglong bytes_received; ulonglong bytes_sent; ulonglong binlog_bytes_written; ulonglong select_commands, update_commands, other_commands; ulonglong commit_trans, rollback_trans; ulonglong denied_connections, lost_connections, max_statement_time_exceeded; ulonglong access_denied_errors; ulonglong empty_queries; double busy_time; // in seconds double cpu_time; // in seconds } USER_STATS; typedef struct st_table_stats { char table[NAME_LEN * 2 + 2]; // [db] + '\0' + [table] + '\0' size_t table_name_length; ulonglong rows_read, rows_changed; ulonglong rows_changed_x_indexes; /* Stores enum db_type, but forward declarations cannot be done */ int engine_type; } TABLE_STATS; typedef struct st_index_stats { // [db] + '\0' + [table] + '\0' + [index] + '\0' char index[NAME_LEN * 3 + 3]; size_t index_name_length; /* Length of 'index' */ ulonglong rows_read; } INDEX_STATS; /* Bits in form->update */ #define REG_MAKE_DUPP 1U /* Make a copy of record when read */ #define REG_NEW_RECORD 2U /* Write a new record if not found */ #define REG_UPDATE 4U /* Uppdate record */ #define REG_DELETE 8U /* Delete found record */ #define REG_PROG 16U /* User is updating database */ #define REG_CLEAR_AFTER_WRITE 32U #define REG_MAY_BE_UPDATED 64U #define REG_AUTO_UPDATE 64U /* Used in D-forms for scroll-tables */ #define REG_OVERWRITE 128U #define REG_SKIP_DUP 256U /* Bits in form->status */ #define STATUS_NO_RECORD (1U+2U) /* Record isn't usable */ #define STATUS_GARBAGE 1U #define STATUS_NOT_FOUND 2U /* No record in database when needed */ #define STATUS_NO_PARENT 4U /* Parent record wasn't found */ #define STATUS_NOT_READ 8U /* Record isn't read */ #define STATUS_UPDATED 16U /* Record is updated by formula */ #define STATUS_NULL_ROW 32U /* table->null_row is set */ #define STATUS_DELETED 64U /* Such interval is "discrete": it is the set of { auto_inc_interval_min + k * increment, 0 <= k <= (auto_inc_interval_values-1) } Where "increment" is maintained separately by the user of this class (and is currently only thd->variables.auto_increment_increment). It mustn't derive from Sql_alloc, because SET INSERT_ID needs to allocate memory which must stay allocated for use by the next statement. */ class Discrete_interval { private: ulonglong interval_min; ulonglong interval_values; ulonglong interval_max; // excluded bound. Redundant. public: Discrete_interval *next; // used when linked into Discrete_intervals_list void replace(ulonglong start, ulonglong val, ulonglong incr) { interval_min= start; interval_values= val; interval_max= (val == ULONGLONG_MAX) ? val : start + val * incr; } Discrete_interval(ulonglong start, ulonglong val, ulonglong incr) : next(NULL) { replace(start, val, incr); }; Discrete_interval() : next(NULL) { replace(0, 0, 0); }; ulonglong minimum() const { return interval_min; }; ulonglong values() const { return interval_values; }; ulonglong maximum() const { return interval_max; }; /* If appending [3,5] to [1,2], we merge both in [1,5] (they should have the same increment for that, user of the class has to ensure that). That is just a space optimization. Returns 0 if merge succeeded. */ bool merge_if_contiguous(ulonglong start, ulonglong val, ulonglong incr) { if (interval_max == start) { if (val == ULONGLONG_MAX) { interval_values= interval_max= val; } else { interval_values+= val; interval_max= start + val * incr; } return 0; } return 1; }; }; /* List of Discrete_interval objects */ class Discrete_intervals_list { private: Discrete_interval *head; Discrete_interval *tail; /* When many intervals are provided at the beginning of the execution of a statement (in a replication slave or SET INSERT_ID), "current" points to the interval being consumed by the thread now (so "current" goes from "head" to "tail" then to NULL). */ Discrete_interval *current; uint elements; // number of elements void set_members(Discrete_interval *h, Discrete_interval *t, Discrete_interval *c, uint el) { head= h; tail= t; current= c; elements= el; } void operator=(Discrete_intervals_list &); /* prevent use of these */ Discrete_intervals_list(const Discrete_intervals_list &); public: Discrete_intervals_list() : head(NULL), current(NULL), elements(0) {}; void empty_no_free() { set_members(NULL, NULL, NULL, 0); } void empty() { for (Discrete_interval *i= head; i;) { Discrete_interval *next= i->next; delete i; i= next; } empty_no_free(); } void copy_shallow(const Discrete_intervals_list * dli) { head= dli->get_head(); tail= dli->get_tail(); current= dli->get_current(); elements= dli->nb_elements(); } void swap (Discrete_intervals_list * dli) { Discrete_interval *h, *t, *c; uint el; h= dli->get_head(); t= dli->get_tail(); c= dli->get_current(); el= dli->nb_elements(); dli->copy_shallow(this); set_members(h, t, c, el); } const Discrete_interval* get_next() { Discrete_interval *tmp= current; if (current != NULL) current= current->next; return tmp; } ~Discrete_intervals_list() { empty(); }; bool append(ulonglong start, ulonglong val, ulonglong incr); bool append(Discrete_interval *interval); ulonglong minimum() const { return (head ? head->minimum() : 0); }; ulonglong maximum() const { return (head ? tail->maximum() : 0); }; uint nb_elements() const { return elements; } Discrete_interval* get_head() const { return head; }; Discrete_interval* get_tail() const { return tail; }; Discrete_interval* get_current() const { return current; }; }; /* DDL options: - CREATE IF NOT EXISTS - DROP IF EXISTS - CREATE LIKE - REPLACE */ struct DDL_options_st { public: enum Options { OPT_NONE= 0, OPT_IF_NOT_EXISTS= 2, // CREATE TABLE IF NOT EXISTS OPT_LIKE= 4, // CREATE TABLE LIKE OPT_OR_REPLACE= 16, // CREATE OR REPLACE TABLE OPT_OR_REPLACE_SLAVE_GENERATED= 32,// REPLACE was added on slave, it was // not in the original query on master. OPT_IF_EXISTS= 64, OPT_CREATE_SELECT= 128 // CREATE ... SELECT }; private: Options m_options; public: Options create_like_options() const { return (DDL_options_st::Options) (((uint) m_options) & (OPT_IF_NOT_EXISTS | OPT_OR_REPLACE)); } void init() { m_options= OPT_NONE; } void init(Options options) { m_options= options; } void set(Options other) { m_options= other; } void set(const DDL_options_st other) { m_options= other.m_options; } bool if_not_exists() const { return m_options & OPT_IF_NOT_EXISTS; } bool or_replace() const { return m_options & OPT_OR_REPLACE; } bool or_replace_slave_generated() const { return m_options & OPT_OR_REPLACE_SLAVE_GENERATED; } bool like() const { return m_options & OPT_LIKE; } bool if_exists() const { return m_options & OPT_IF_EXISTS; } bool is_create_select() const { return m_options & OPT_CREATE_SELECT; } void add(const DDL_options_st::Options other) { m_options= (Options) ((uint) m_options | (uint) other); } void add(const DDL_options_st &other) { add(other.m_options); } DDL_options_st operator|(const DDL_options_st &other) { add(other.m_options); return *this; } DDL_options_st operator|=(DDL_options_st::Options other) { add(other); return *this; } }; class DDL_options: public DDL_options_st { public: DDL_options() { init(); } DDL_options(Options options) { init(options); } DDL_options(const DDL_options_st &options) { DDL_options_st::operator=(options); } }; struct Lex_length_and_dec_st { private: const char *m_length; const char *m_dec; public: void set(const char *length, const char *dec) { m_length= length; m_dec= dec; } const char *length() const { return m_length; } const char *dec() const { return m_dec; } }; struct Lex_field_type_st: public Lex_length_and_dec_st { private: const Type_handler *m_handler; void set(const Type_handler *handler, const char *length, const char *dec) { m_handler= handler; Lex_length_and_dec_st::set(length, dec); } public: void set(const Type_handler *handler, Lex_length_and_dec_st length_and_dec) { m_handler= handler; Lex_length_and_dec_st::operator=(length_and_dec); } void set_handler_length_flags(const Type_handler *handler, const char *length, uint32 flags); void set(const Type_handler *handler, const char *length) { set(handler, length, 0); } void set(const Type_handler *handler) { set(handler, 0, 0); } void set_handler(const Type_handler *handler) { m_handler= handler; } const Type_handler *type_handler() const { return m_handler; } }; struct Lex_dyncol_type_st: public Lex_length_and_dec_st { private: int m_type; // enum_dynamic_column_type is not visible here, so use int public: void set(int type, const char *length, const char *dec) { m_type= type; Lex_length_and_dec_st::set(length, dec); } void set(int type, Lex_length_and_dec_st length_and_dec) { m_type= type; Lex_length_and_dec_st::operator=(length_and_dec); } void set(int type, const char *length) { set(type, length, 0); } void set(int type) { set(type, 0, 0); } int dyncol_type() const { return m_type; } }; struct Lex_spblock_handlers_st { public: int hndlrs; void init(int count) { hndlrs= count; } }; struct Lex_spblock_st: public Lex_spblock_handlers_st { public: int vars; int conds; int curs; void init() { vars= conds= hndlrs= curs= 0; } void init_using_vars(uint nvars) { vars= nvars; conds= hndlrs= curs= 0; } void join(const Lex_spblock_st &b1, const Lex_spblock_st &b2) { vars= b1.vars + b2.vars; conds= b1.conds + b2.conds; hndlrs= b1.hndlrs + b2.hndlrs; curs= b1.curs + b2.curs; } }; class Lex_spblock: public Lex_spblock_st { public: Lex_spblock() { init(); } Lex_spblock(const Lex_spblock_handlers_st &other) { vars= conds= curs= 0; hndlrs= other.hndlrs; } }; struct Lex_for_loop_bounds_st { public: class sp_assignment_lex *m_index; // The first iteration value (or cursor) class sp_assignment_lex *m_target_bound; // The last iteration value int8 m_direction; bool m_implicit_cursor; bool is_for_loop_cursor() const { return m_target_bound == NULL; } }; class Lex_for_loop_bounds_intrange: public Lex_for_loop_bounds_st { public: Lex_for_loop_bounds_intrange(int8 direction, class sp_assignment_lex *left_expr, class sp_assignment_lex *right_expr) { m_direction= direction; m_index= direction > 0 ? left_expr : right_expr; m_target_bound= direction > 0 ? right_expr : left_expr; m_implicit_cursor= false; } }; struct Lex_for_loop_st { public: class sp_variable *m_index; // The first iteration value (or cursor) class sp_variable *m_target_bound; // The last iteration value int m_cursor_offset; int8 m_direction; bool m_implicit_cursor; void init() { m_index= 0; m_target_bound= 0; m_cursor_offset= 0; m_direction= 0; m_implicit_cursor= false; } bool is_for_loop_cursor() const { return m_target_bound == NULL; } bool is_for_loop_explicit_cursor() const { return is_for_loop_cursor() && !m_implicit_cursor; } }; enum trim_spec { TRIM_LEADING, TRIM_TRAILING, TRIM_BOTH }; struct Lex_trim_st { Item *m_remove; Item *m_source; trim_spec m_spec; public: void set(trim_spec spec, Item *remove, Item *source) { m_spec= spec; m_remove= remove; m_source= source; } void set(trim_spec spec, Item *source) { set(spec, NULL, source); } Item *make_item_func_trim_std(THD *thd) const; Item *make_item_func_trim_oracle(THD *thd) const; }; class Lex_trim: public Lex_trim_st { public: Lex_trim(trim_spec spec, Item *source) { set(spec, source); } }; class Lex_substring_spec_st { public: Item *m_subject; Item *m_from; Item *m_for; static Lex_substring_spec_st init(Item *subject, Item *from, Item *xfor= NULL) { Lex_substring_spec_st res; res.m_subject= subject; res.m_from= from; res.m_for= xfor; return res; } }; class st_select_lex; class Lex_select_lock { public: struct { uint defined_lock:1; uint update_lock:1; uint defined_timeout:1; uint skip_locked:1; }; ulong timeout; void empty() { defined_lock= update_lock= defined_timeout= skip_locked= FALSE; timeout= 0; } void set_to(st_select_lex *sel); }; class Lex_select_limit { public: /* explicit LIMIT clause was used */ bool explicit_limit; bool with_ties; Item *select_limit, *offset_limit; void clear() { explicit_limit= FALSE; // No explicit limit given by user with_ties= FALSE; // No use of WITH TIES operator select_limit= NULL; // denotes the default limit = HA_POS_ERROR offset_limit= NULL; // denotes the default offset = 0 } }; struct st_order; class Load_data_param { protected: CHARSET_INFO *m_charset; // Character set of the file ulonglong m_fixed_length; // Sum of target field lengths for fixed format bool m_is_fixed_length; bool m_use_blobs; public: Load_data_param(CHARSET_INFO *cs, bool is_fixed_length): m_charset(cs), m_fixed_length(0), m_is_fixed_length(is_fixed_length), m_use_blobs(false) { } bool add_outvar_field(THD *thd, const Field *field); bool add_outvar_user_var(THD *thd); CHARSET_INFO *charset() const { return m_charset; } bool is_fixed_length() const { return m_is_fixed_length; } bool use_blobs() const { return m_use_blobs; } }; class Load_data_outvar { public: virtual ~Load_data_outvar() = default; virtual bool load_data_set_null(THD *thd, const Load_data_param *param)= 0; virtual bool load_data_set_value(THD *thd, const char *pos, uint length, const Load_data_param *param)= 0; virtual bool load_data_set_no_data(THD *thd, const Load_data_param *param)= 0; virtual void load_data_print_for_log_event(THD *thd, class String *to) const= 0; virtual bool load_data_add_outvar(THD *thd, Load_data_param *param) const= 0; virtual uint load_data_fixed_length() const= 0; }; class Timeval: public timeval { protected: Timeval() = default; public: Timeval(my_time_t sec, ulong usec) { tv_sec= sec; /* Since tv_usec is not always of type ulong, cast usec parameter explicitly to uint to avoid compiler warnings about losing integer precision. */ DBUG_ASSERT(usec < 1000000); tv_usec= (uint)usec; } explicit Timeval(const timeval &tv) :timeval(tv) { } }; #endif /* STRUCTS_INCLUDED */