ok
Direktori : /proc/thread-self/root/proc/thread-self/root/lib64/python3.6/asyncio/ |
Current File : //proc/thread-self/root/proc/thread-self/root/lib64/python3.6/asyncio/sslproto.py |
import collections import warnings try: import ssl except ImportError: # pragma: no cover ssl = None from . import base_events from . import compat from . import protocols from . import transports from .log import logger def _create_transport_context(server_side, server_hostname): if server_side: raise ValueError('Server side SSL needs a valid SSLContext') # Client side may pass ssl=True to use a default # context; in that case the sslcontext passed is None. # The default is secure for client connections. if hasattr(ssl, 'create_default_context'): # Python 3.4+: use up-to-date strong settings. sslcontext = ssl.create_default_context() if not server_hostname: sslcontext.check_hostname = False else: # Fallback for Python 3.3. sslcontext = ssl.SSLContext(ssl.PROTOCOL_SSLv23) sslcontext.options |= ssl.OP_NO_SSLv2 sslcontext.options |= ssl.OP_NO_SSLv3 sslcontext.set_default_verify_paths() sslcontext.verify_mode = ssl.CERT_REQUIRED return sslcontext def _is_sslproto_available(): return hasattr(ssl, "MemoryBIO") # States of an _SSLPipe. _UNWRAPPED = "UNWRAPPED" _DO_HANDSHAKE = "DO_HANDSHAKE" _WRAPPED = "WRAPPED" _SHUTDOWN = "SHUTDOWN" class _SSLPipe(object): """An SSL "Pipe". An SSL pipe allows you to communicate with an SSL/TLS protocol instance through memory buffers. It can be used to implement a security layer for an existing connection where you don't have access to the connection's file descriptor, or for some reason you don't want to use it. An SSL pipe can be in "wrapped" and "unwrapped" mode. In unwrapped mode, data is passed through untransformed. In wrapped mode, application level data is encrypted to SSL record level data and vice versa. The SSL record level is the lowest level in the SSL protocol suite and is what travels as-is over the wire. An SslPipe initially is in "unwrapped" mode. To start SSL, call do_handshake(). To shutdown SSL again, call unwrap(). """ max_size = 256 * 1024 # Buffer size passed to read() def __init__(self, context, server_side, server_hostname=None): """ The *context* argument specifies the ssl.SSLContext to use. The *server_side* argument indicates whether this is a server side or client side transport. The optional *server_hostname* argument can be used to specify the hostname you are connecting to. You may only specify this parameter if the _ssl module supports Server Name Indication (SNI). """ self._context = context self._server_side = server_side self._server_hostname = server_hostname self._state = _UNWRAPPED self._incoming = ssl.MemoryBIO() self._outgoing = ssl.MemoryBIO() self._sslobj = None self._need_ssldata = False self._handshake_cb = None self._shutdown_cb = None @property def context(self): """The SSL context passed to the constructor.""" return self._context @property def ssl_object(self): """The internal ssl.SSLObject instance. Return None if the pipe is not wrapped. """ return self._sslobj @property def need_ssldata(self): """Whether more record level data is needed to complete a handshake that is currently in progress.""" return self._need_ssldata @property def wrapped(self): """ Whether a security layer is currently in effect. Return False during handshake. """ return self._state == _WRAPPED def do_handshake(self, callback=None): """Start the SSL handshake. Return a list of ssldata. A ssldata element is a list of buffers The optional *callback* argument can be used to install a callback that will be called when the handshake is complete. The callback will be called with None if successful, else an exception instance. """ if self._state != _UNWRAPPED: raise RuntimeError('handshake in progress or completed') self._sslobj = self._context.wrap_bio( self._incoming, self._outgoing, server_side=self._server_side, server_hostname=self._server_hostname) self._state = _DO_HANDSHAKE self._handshake_cb = callback ssldata, appdata = self.feed_ssldata(b'', only_handshake=True) assert len(appdata) == 0 return ssldata def shutdown(self, callback=None): """Start the SSL shutdown sequence. Return a list of ssldata. A ssldata element is a list of buffers The optional *callback* argument can be used to install a callback that will be called when the shutdown is complete. The callback will be called without arguments. """ if self._state == _UNWRAPPED: raise RuntimeError('no security layer present') if self._state == _SHUTDOWN: raise RuntimeError('shutdown in progress') assert self._state in (_WRAPPED, _DO_HANDSHAKE) self._state = _SHUTDOWN self._shutdown_cb = callback ssldata, appdata = self.feed_ssldata(b'') assert appdata == [] or appdata == [b''] return ssldata def feed_eof(self): """Send a potentially "ragged" EOF. This method will raise an SSL_ERROR_EOF exception if the EOF is unexpected. """ self._incoming.write_eof() ssldata, appdata = self.feed_ssldata(b'') assert appdata == [] or appdata == [b''] def feed_ssldata(self, data, only_handshake=False): """Feed SSL record level data into the pipe. The data must be a bytes instance. It is OK to send an empty bytes instance. This can be used to get ssldata for a handshake initiated by this endpoint. Return a (ssldata, appdata) tuple. The ssldata element is a list of buffers containing SSL data that needs to be sent to the remote SSL. The appdata element is a list of buffers containing plaintext data that needs to be forwarded to the application. The appdata list may contain an empty buffer indicating an SSL "close_notify" alert. This alert must be acknowledged by calling shutdown(). """ if self._state == _UNWRAPPED: # If unwrapped, pass plaintext data straight through. if data: appdata = [data] else: appdata = [] return ([], appdata) self._need_ssldata = False if data: self._incoming.write(data) ssldata = [] appdata = [] try: if self._state == _DO_HANDSHAKE: # Call do_handshake() until it doesn't raise anymore. self._sslobj.do_handshake() self._state = _WRAPPED if self._handshake_cb: self._handshake_cb(None) if only_handshake: return (ssldata, appdata) # Handshake done: execute the wrapped block if self._state == _WRAPPED: # Main state: read data from SSL until close_notify while True: chunk = self._sslobj.read(self.max_size) appdata.append(chunk) if not chunk: # close_notify break elif self._state == _SHUTDOWN: # Call shutdown() until it doesn't raise anymore. self._sslobj.unwrap() self._sslobj = None self._state = _UNWRAPPED if self._shutdown_cb: self._shutdown_cb() elif self._state == _UNWRAPPED: # Drain possible plaintext data after close_notify. appdata.append(self._incoming.read()) except (ssl.SSLError, ssl.CertificateError) as exc: if getattr(exc, 'errno', None) not in ( ssl.SSL_ERROR_WANT_READ, ssl.SSL_ERROR_WANT_WRITE, ssl.SSL_ERROR_SYSCALL): if self._state == _DO_HANDSHAKE and self._handshake_cb: self._handshake_cb(exc) raise self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ) # Check for record level data that needs to be sent back. # Happens for the initial handshake and renegotiations. if self._outgoing.pending: ssldata.append(self._outgoing.read()) return (ssldata, appdata) def feed_appdata(self, data, offset=0): """Feed plaintext data into the pipe. Return an (ssldata, offset) tuple. The ssldata element is a list of buffers containing record level data that needs to be sent to the remote SSL instance. The offset is the number of plaintext bytes that were processed, which may be less than the length of data. NOTE: In case of short writes, this call MUST be retried with the SAME buffer passed into the *data* argument (i.e. the id() must be the same). This is an OpenSSL requirement. A further particularity is that a short write will always have offset == 0, because the _ssl module does not enable partial writes. And even though the offset is zero, there will still be encrypted data in ssldata. """ assert 0 <= offset <= len(data) if self._state == _UNWRAPPED: # pass through data in unwrapped mode if offset < len(data): ssldata = [data[offset:]] else: ssldata = [] return (ssldata, len(data)) ssldata = [] view = memoryview(data) while True: self._need_ssldata = False try: if offset < len(view): offset += self._sslobj.write(view[offset:]) except ssl.SSLError as exc: # It is not allowed to call write() after unwrap() until the # close_notify is acknowledged. We return the condition to the # caller as a short write. if exc.reason == 'PROTOCOL_IS_SHUTDOWN': exc.errno = ssl.SSL_ERROR_WANT_READ if exc.errno not in (ssl.SSL_ERROR_WANT_READ, ssl.SSL_ERROR_WANT_WRITE, ssl.SSL_ERROR_SYSCALL): raise self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ) # See if there's any record level data back for us. if self._outgoing.pending: ssldata.append(self._outgoing.read()) if offset == len(view) or self._need_ssldata: break return (ssldata, offset) class _SSLProtocolTransport(transports._FlowControlMixin, transports.Transport): def __init__(self, loop, ssl_protocol): self._loop = loop # SSLProtocol instance self._ssl_protocol = ssl_protocol self._closed = False def get_extra_info(self, name, default=None): """Get optional transport information.""" return self._ssl_protocol._get_extra_info(name, default) def set_protocol(self, protocol): self._ssl_protocol._app_protocol = protocol def get_protocol(self): return self._ssl_protocol._app_protocol def is_closing(self): return self._closed def close(self): """Close the transport. Buffered data will be flushed asynchronously. No more data will be received. After all buffered data is flushed, the protocol's connection_lost() method will (eventually) called with None as its argument. """ self._closed = True self._ssl_protocol._start_shutdown() # On Python 3.3 and older, objects with a destructor part of a reference # cycle are never destroyed. It's not more the case on Python 3.4 thanks # to the PEP 442. if compat.PY34: def __del__(self): if not self._closed: warnings.warn("unclosed transport %r" % self, ResourceWarning, source=self) self.close() def pause_reading(self): """Pause the receiving end. No data will be passed to the protocol's data_received() method until resume_reading() is called. """ self._ssl_protocol._transport.pause_reading() def resume_reading(self): """Resume the receiving end. Data received will once again be passed to the protocol's data_received() method. """ self._ssl_protocol._transport.resume_reading() def set_write_buffer_limits(self, high=None, low=None): """Set the high- and low-water limits for write flow control. These two values control when to call the protocol's pause_writing() and resume_writing() methods. If specified, the low-water limit must be less than or equal to the high-water limit. Neither value can be negative. The defaults are implementation-specific. If only the high-water limit is given, the low-water limit defaults to an implementation-specific value less than or equal to the high-water limit. Setting high to zero forces low to zero as well, and causes pause_writing() to be called whenever the buffer becomes non-empty. Setting low to zero causes resume_writing() to be called only once the buffer is empty. Use of zero for either limit is generally sub-optimal as it reduces opportunities for doing I/O and computation concurrently. """ self._ssl_protocol._transport.set_write_buffer_limits(high, low) def get_write_buffer_size(self): """Return the current size of the write buffer.""" return self._ssl_protocol._transport.get_write_buffer_size() def write(self, data): """Write some data bytes to the transport. This does not block; it buffers the data and arranges for it to be sent out asynchronously. """ if not isinstance(data, (bytes, bytearray, memoryview)): raise TypeError("data: expecting a bytes-like instance, got {!r}" .format(type(data).__name__)) if not data: return self._ssl_protocol._write_appdata(data) def can_write_eof(self): """Return True if this transport supports write_eof(), False if not.""" return False def abort(self): """Close the transport immediately. Buffered data will be lost. No more data will be received. The protocol's connection_lost() method will (eventually) be called with None as its argument. """ self._ssl_protocol._abort() class SSLProtocol(protocols.Protocol): """SSL protocol. Implementation of SSL on top of a socket using incoming and outgoing buffers which are ssl.MemoryBIO objects. """ def __init__(self, loop, app_protocol, sslcontext, waiter, server_side=False, server_hostname=None, call_connection_made=True): if ssl is None: raise RuntimeError('stdlib ssl module not available') if not sslcontext: sslcontext = _create_transport_context(server_side, server_hostname) self._server_side = server_side if server_hostname and not server_side: self._server_hostname = server_hostname else: self._server_hostname = None self._sslcontext = sslcontext # SSL-specific extra info. More info are set when the handshake # completes. self._extra = dict(sslcontext=sslcontext) # App data write buffering self._write_backlog = collections.deque() self._write_buffer_size = 0 self._waiter = waiter self._loop = loop self._app_protocol = app_protocol self._app_transport = _SSLProtocolTransport(self._loop, self) # _SSLPipe instance (None until the connection is made) self._sslpipe = None self._session_established = False self._in_handshake = False self._in_shutdown = False # transport, ex: SelectorSocketTransport self._transport = None self._call_connection_made = call_connection_made def _wakeup_waiter(self, exc=None): if self._waiter is None: return if not self._waiter.cancelled(): if exc is not None: self._waiter.set_exception(exc) else: self._waiter.set_result(None) self._waiter = None def connection_made(self, transport): """Called when the low-level connection is made. Start the SSL handshake. """ self._transport = transport self._sslpipe = _SSLPipe(self._sslcontext, self._server_side, self._server_hostname) self._start_handshake() def connection_lost(self, exc): """Called when the low-level connection is lost or closed. The argument is an exception object or None (the latter meaning a regular EOF is received or the connection was aborted or closed). """ if self._session_established: self._session_established = False self._loop.call_soon(self._app_protocol.connection_lost, exc) self._transport = None self._app_transport = None self._wakeup_waiter(exc) def pause_writing(self): """Called when the low-level transport's buffer goes over the high-water mark. """ self._app_protocol.pause_writing() def resume_writing(self): """Called when the low-level transport's buffer drains below the low-water mark. """ self._app_protocol.resume_writing() def data_received(self, data): """Called when some SSL data is received. The argument is a bytes object. """ if self._sslpipe is None: # transport closing, sslpipe is destroyed return try: ssldata, appdata = self._sslpipe.feed_ssldata(data) except ssl.SSLError as e: if self._loop.get_debug(): logger.warning('%r: SSL error %s (reason %s)', self, e.errno, e.reason) self._abort() return for chunk in ssldata: self._transport.write(chunk) for chunk in appdata: if chunk: self._app_protocol.data_received(chunk) else: self._start_shutdown() break def eof_received(self): """Called when the other end of the low-level stream is half-closed. If this returns a false value (including None), the transport will close itself. If it returns a true value, closing the transport is up to the protocol. """ try: if self._loop.get_debug(): logger.debug("%r received EOF", self) self._wakeup_waiter(ConnectionResetError) if not self._in_handshake: keep_open = self._app_protocol.eof_received() if keep_open: logger.warning('returning true from eof_received() ' 'has no effect when using ssl') finally: self._transport.close() def _get_extra_info(self, name, default=None): if name in self._extra: return self._extra[name] elif self._transport is not None: return self._transport.get_extra_info(name, default) else: return default def _start_shutdown(self): if self._in_shutdown: return if self._in_handshake: self._abort() else: self._in_shutdown = True self._write_appdata(b'') def _write_appdata(self, data): self._write_backlog.append((data, 0)) self._write_buffer_size += len(data) self._process_write_backlog() def _start_handshake(self): if self._loop.get_debug(): logger.debug("%r starts SSL handshake", self) self._handshake_start_time = self._loop.time() else: self._handshake_start_time = None self._in_handshake = True # (b'', 1) is a special value in _process_write_backlog() to do # the SSL handshake self._write_backlog.append((b'', 1)) self._process_write_backlog() def _on_handshake_complete(self, handshake_exc): self._in_handshake = False sslobj = self._sslpipe.ssl_object try: if handshake_exc is not None: raise handshake_exc peercert = sslobj.getpeercert() if not hasattr(self._sslcontext, 'check_hostname'): # Verify hostname if requested, Python 3.4+ uses check_hostname # and checks the hostname in do_handshake() if (self._server_hostname and self._sslcontext.verify_mode != ssl.CERT_NONE): ssl.match_hostname(peercert, self._server_hostname) except BaseException as exc: if self._loop.get_debug(): if isinstance(exc, ssl.CertificateError): logger.warning("%r: SSL handshake failed " "on verifying the certificate", self, exc_info=True) else: logger.warning("%r: SSL handshake failed", self, exc_info=True) self._transport.close() if isinstance(exc, Exception): self._wakeup_waiter(exc) return else: raise if self._loop.get_debug(): dt = self._loop.time() - self._handshake_start_time logger.debug("%r: SSL handshake took %.1f ms", self, dt * 1e3) # Add extra info that becomes available after handshake. self._extra.update(peercert=peercert, cipher=sslobj.cipher(), compression=sslobj.compression(), ssl_object=sslobj, ) if self._call_connection_made: self._app_protocol.connection_made(self._app_transport) self._wakeup_waiter() self._session_established = True # In case transport.write() was already called. Don't call # immediately _process_write_backlog(), but schedule it: # _on_handshake_complete() can be called indirectly from # _process_write_backlog(), and _process_write_backlog() is not # reentrant. self._loop.call_soon(self._process_write_backlog) def _process_write_backlog(self): # Try to make progress on the write backlog. if self._transport is None or self._sslpipe is None: return try: for i in range(len(self._write_backlog)): data, offset = self._write_backlog[0] if data: ssldata, offset = self._sslpipe.feed_appdata(data, offset) elif offset: ssldata = self._sslpipe.do_handshake( self._on_handshake_complete) offset = 1 else: ssldata = self._sslpipe.shutdown(self._finalize) offset = 1 for chunk in ssldata: self._transport.write(chunk) if offset < len(data): self._write_backlog[0] = (data, offset) # A short write means that a write is blocked on a read # We need to enable reading if it is paused! assert self._sslpipe.need_ssldata if self._transport._paused: self._transport.resume_reading() break # An entire chunk from the backlog was processed. We can # delete it and reduce the outstanding buffer size. del self._write_backlog[0] self._write_buffer_size -= len(data) except BaseException as exc: if self._in_handshake: # BaseExceptions will be re-raised in _on_handshake_complete. self._on_handshake_complete(exc) else: self._fatal_error(exc, 'Fatal error on SSL transport') if not isinstance(exc, Exception): # BaseException raise def _fatal_error(self, exc, message='Fatal error on transport'): # Should be called from exception handler only. if isinstance(exc, base_events._FATAL_ERROR_IGNORE): if self._loop.get_debug(): logger.debug("%r: %s", self, message, exc_info=True) else: self._loop.call_exception_handler({ 'message': message, 'exception': exc, 'transport': self._transport, 'protocol': self, }) if self._transport: self._transport._force_close(exc) def _finalize(self): self._sslpipe = None if self._transport is not None: self._transport.close() def _abort(self): try: if self._transport is not None: self._transport.abort() finally: self._finalize()