Current File : //proc/thread-self/root/usr/lib64/python2.7/fractions.pyo
�
zfc@ s�dZddlmZddlmZddlZddlZddlZddlZddgZ ej
Z
d�Zejdej
ejB�Zde
fd ��YZdS(
s+Rational, infinite-precision, real numbers.i����(tdivision(tDecimalNtFractiontgcdcC s"x|r|||}}qW|S(s�Calculate the Greatest Common Divisor of a and b.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
((tatb((s!/usr/lib64/python2.7/fractions.pyRs sC
\A\s* # optional whitespace at the start, then
(?P<sign>[-+]?) # an optional sign, then
(?=\d|\.\d) # lookahead for digit or .digit
(?P<num>\d*) # numerator (possibly empty)
(?: # followed by
(?:/(?P<denom>\d+))? # an optional denominator
| # or
(?:\.(?P<decimal>\d*))? # an optional fractional part
(?:E(?P<exp>[-+]?\d+))? # and optional exponent
)
\s*\Z # and optional whitespace to finish
cB s�eZdZd'Zdd(d�Zed��Zed��Zdd�Z e
d ��Ze
d
��Zd�Z
d�Zd
�Zd�Zeeej�\ZZd�Zeeej�\ZZd�Zeeej�\ZZd�Zeeej�\ZZ eeej!�\Z"Z#d�Z$d�Z%d�Z&d�Z'd�Z(d�Z)d�Z*d�Z+d�Z,d�Z-d�Z.d�Z/d�Z0d�Z1d �Z2d!�Z3d"�Z4d#�Z5d$�Z6d%�Z7d&�Z8RS()s]This class implements rational numbers.
In the two-argument form of the constructor, Fraction(8, 6) will
produce a rational number equivalent to 4/3. Both arguments must
be Rational. The numerator defaults to 0 and the denominator
defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
Fractions can also be constructed from:
- numeric strings similar to those accepted by the
float constructor (for example, '-2.3' or '1e10')
- strings of the form '123/456'
- float and Decimal instances
- other Rational instances (including integers)
t
_numeratort_denominatoricC s�tt|�j|�}|dkrt|t�rO|j|_|j|_ |St|t
�r�tj|�}|j|_|j |_ |St|t�r�tj
|�}|j|_|j |_ |St|t�r�tj|�}|dkrtd|��nt|jd�pd�}|jd�}|r?t|�}n�d}|jd�}|r�dt|�}||t|�}||9}n|jd�} | r�t| �} | d kr�|d| 9}q�|d| 9}n|jd
�dkr |}q qZtd��nNt|t�rNt|t�rN|j|j|j|j}}ntd
��|d krytd|��nt||�}
||
|_||
|_ |S(s�Constructs a Fraction.
Takes a string like '3/2' or '1.5', another Rational instance, a
numerator/denominator pair, or a float.
Examples
--------
>>> Fraction(10, -8)
Fraction(-5, 4)
>>> Fraction(Fraction(1, 7), 5)
Fraction(1, 35)
>>> Fraction(Fraction(1, 7), Fraction(2, 3))
Fraction(3, 14)
>>> Fraction('314')
Fraction(314, 1)
>>> Fraction('-35/4')
Fraction(-35, 4)
>>> Fraction('3.1415') # conversion from numeric string
Fraction(6283, 2000)
>>> Fraction('-47e-2') # string may include a decimal exponent
Fraction(-47, 100)
>>> Fraction(1.47) # direct construction from float (exact conversion)
Fraction(6620291452234629, 4503599627370496)
>>> Fraction(2.25)
Fraction(9, 4)
>>> Fraction(Decimal('1.47'))
Fraction(147, 100)
s Invalid literal for Fraction: %rtnumt0tdenomitdecimali
texpitsignt-s2argument should be a string or a Rational instances+both arguments should be Rational instancessFraction(%s, 0)N(tsuperRt__new__tNonet
isinstancetRationalt numeratorRtdenominatorRtfloatt
from_floatRtfrom_decimalt
basestringt_RATIONAL_FORMATtmatcht
ValueErrortinttgrouptlent TypeErrortZeroDivisionErrorR(tclsRRtselftvaluetmR
RtscaleRtg((s!/usr/lib64/python2.7/fractions.pyRDsf
cC s�t|tj�r||�St|t�sStd|j|t|�jf��ntj|�sqtj |�r�td||jf��n||j
��S(s�Converts a finite float to a rational number, exactly.
Beware that Fraction.from_float(0.3) != Fraction(3, 10).
s.%s.from_float() only takes floats, not %r (%s)sCannot convert %r to %s.(RtnumberstIntegralRR t__name__ttypetmathtisnantisinftas_integer_ratio(R"tf((s!/usr/lib64/python2.7/fractions.pyR�s
"cC s
ddlm}t|tj�r7|t|��}n7t||�sntd|j|t|�jf��n|j �s�td||jf��n|j
�\}}}tdjtt
|���}|r�|}n|dkr�||d|�S||d|�SdS( sAConverts a finite Decimal instance to a rational number, exactly.i����(Rs2%s.from_decimal() only takes Decimals, not %r (%s)sCannot convert %s to %s.tii
N(RRRR(R)RR R*R+t is_finitetas_tupletjointmaptstr(R"tdecRR
tdigitsR((s!/usr/lib64/python2.7/fractions.pyR�s "
i@Bc
C s1|dkrtd��n|j|kr4t|�Sd\}}}}|j|j}}xmtr�||}|||} | |kr�Pn|||||| f\}}}}||||}}q\W|||}
t||
|||
|�}t||�}t||�t||�kr)|S|SdS(sWClosest Fraction to self with denominator at most max_denominator.
>>> Fraction('3.141592653589793').limit_denominator(10)
Fraction(22, 7)
>>> Fraction('3.141592653589793').limit_denominator(100)
Fraction(311, 99)
>>> Fraction(4321, 8765).limit_denominator(10000)
Fraction(4321, 8765)
is$max_denominator should be at least 1iN(iiii(RRRRtTruetabs(
R#tmax_denominatortp0tq0tp1tq1tntdRtq2tktbound1tbound2((s!/usr/lib64/python2.7/fractions.pytlimit_denominator�s&
& cC s|jS(N(R(R((s!/usr/lib64/python2.7/fractions.pyRscC s|jS(N(R(R((s!/usr/lib64/python2.7/fractions.pyR scC sd|j|jfS(s
repr(self)sFraction(%s, %s)(RR(R#((s!/usr/lib64/python2.7/fractions.pyt__repr__
scC s4|jdkrt|j�Sd|j|jfSdS(s str(self)is%s/%sN(RR6R(R#((s!/usr/lib64/python2.7/fractions.pyt__str__s
c sn��fd�}d�jd|_�j|_��fd�}d�jd|_�j|_||fS(s�Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
In general, we want to implement the arithmetic operations so
that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both
to the nearest built in type and do the operation there. In
Fraction, that means that we define __add__ and __radd__ as:
def __add__(self, other):
# Both types have numerators/denominator attributes,
# so do the operation directly
if isinstance(other, (int, long, Fraction)):
return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
# float and complex don't have those operations, but we
# know about those types, so special case them.
elif isinstance(other, float):
return float(self) + other
elif isinstance(other, complex):
return complex(self) + other
# Let the other type take over.
return NotImplemented
def __radd__(self, other):
# radd handles more types than add because there's
# nothing left to fall back to.
if isinstance(other, Rational):
return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
elif isinstance(other, Real):
return float(other) + float(self)
elif isinstance(other, Complex):
return complex(other) + complex(self)
return NotImplemented
There are 5 different cases for a mixed-type addition on
Fraction. I'll refer to all of the above code that doesn't
refer to Fraction, float, or complex as "boilerplate". 'r'
will be an instance of Fraction, which is a subtype of
Rational (r : Fraction <: Rational), and b : B <:
Complex. The first three involve 'r + b':
1. If B <: Fraction, int, float, or complex, we handle
that specially, and all is well.
2. If Fraction falls back to the boilerplate code, and it
were to return a value from __add__, we'd miss the
possibility that B defines a more intelligent __radd__,
so the boilerplate should return NotImplemented from
__add__. In particular, we don't handle Rational
here, even though we could get an exact answer, in case
the other type wants to do something special.
3. If B <: Fraction, Python tries B.__radd__ before
Fraction.__add__. This is ok, because it was
implemented with knowledge of Fraction, so it can
handle those instances before delegating to Real or
Complex.
The next two situations describe 'b + r'. We assume that b
didn't know about Fraction in its implementation, and that it
uses similar boilerplate code:
4. If B <: Rational, then __radd_ converts both to the
builtin rational type (hey look, that's us) and
proceeds.
5. Otherwise, __radd__ tries to find the nearest common
base ABC, and fall back to its builtin type. Since this
class doesn't subclass a concrete type, there's no
implementation to fall back to, so we need to try as
hard as possible to return an actual value, or the user
will get a TypeError.
c sqt|tttf�r%�||�St|t�rG�t|�|�St|t�ri�t|�|�StSdS(N(RRtlongRRtcomplextNotImplemented(RR(tfallback_operatortmonomorphic_operator(s!/usr/lib64/python2.7/fractions.pytforwardhs
t__c szt|t�r�||�St|tj�rG�t|�t|��St|tj�rr�t|�t|��StSdS(N(RRR(tRealRtComplexRJRK(RR(RLRM(s!/usr/lib64/python2.7/fractions.pytreversets
t__r(R*t__doc__(RMRLRNRR((RLRMs!/usr/lib64/python2.7/fractions.pyt_operator_fallbackssP
cC s/t|j|j|j|j|j|j�S(sa + b(RRR(RR((s!/usr/lib64/python2.7/fractions.pyt_add�scC s/t|j|j|j|j|j|j�S(sa - b(RRR(RR((s!/usr/lib64/python2.7/fractions.pyt_sub�scC s!t|j|j|j|j�S(sa * b(RRR(RR((s!/usr/lib64/python2.7/fractions.pyt_mul�scC s!t|j|j|j|j�S(sa / b(RRR(RR((s!/usr/lib64/python2.7/fractions.pyt_div�scC s8||}t|t�r'|j|jStj|�SdS(sa // bN(RRRRR,tfloor(RRtdiv((s!/usr/lib64/python2.7/fractions.pyt__floordiv__�s
cC s8||}t|t�r'|j|jStj|�SdS(sa // bN(RRRRR,RZ(RRR[((s!/usr/lib64/python2.7/fractions.pyt
__rfloordiv__�s
cC s||}|||S(sa % b((RRR[((s!/usr/lib64/python2.7/fractions.pyt__mod__�s
cC s||}|||S(sa % b((RRR[((s!/usr/lib64/python2.7/fractions.pyt__rmod__�s
cC s�t|t�r�|jdkrn|j}|dkrNt|j||j|�St|j||j|�Sq�t|�t|�Snt|�|SdS(s�a ** b
If b is not an integer, the result will be a float or complex
since roots are generally irrational. If b is an integer, the
result will be rational.
iiN(RRRRRRRR(RRtpower((s!/usr/lib64/python2.7/fractions.pyt__pow__�s
cC sw|jdkr)|jdkr)||jSt|t�rOt|j|j�|S|jdkri||jS|t|�S(sa ** bii(RRRRRRRR(RR((s!/usr/lib64/python2.7/fractions.pyt__rpow__�scC st|j|j�S(s++a: Coerces a subclass instance to Fraction(RRR(R((s!/usr/lib64/python2.7/fractions.pyt__pos__�scC st|j|j�S(s-a(RRR(R((s!/usr/lib64/python2.7/fractions.pyt__neg__�scC stt|j�|j�S(sabs(a)(RR:RR(R((s!/usr/lib64/python2.7/fractions.pyt__abs__�scC s1|jdkr|j|jS|j|jSdS(strunc(a)iN(RR(R((s!/usr/lib64/python2.7/fractions.pyt __trunc__�scC sX|jdkrt|j�S|t|�kr>tt|��St|j|jf�SdS(s�hash(self)
Tricky because values that are exactly representable as a
float must have the same hash as that float.
iN(RthashRR(R#((s!/usr/lib64/python2.7/fractions.pyt__hash__�s
cC s�t|t�r1|j|jko0|j|jkSt|tj�r^|jdkr^|j }nt|t
�r�tj|�s�tj
|�r�d|kS||j|�kSntSdS(sa == bigN(RRRRRRR(RQtimagtrealRR,R-R.RRK(RR((s!/usr/lib64/python2.7/fractions.pyt__eq__s!
cC s�t|t�r0||j|j|j|j�St|t�rNtd��nt|t�r�t j
|�s{t j|�r�|d|�S|||j|��Snt
SdS(scHelper for comparison operators, for internal use only.
Implement comparison between a Rational instance `self`, and
either another Rational instance or a float `other`. If
`other` is not a Rational instance or a float, return
NotImplemented. `op` should be one of the six standard
comparison operators.
s3no ordering relation is defined for complex numbersgN(RRRRRRRJR RR,R-R.RRK(R#tothertop((s!/usr/lib64/python2.7/fractions.pyt_richcmp"s
cC s|j|tj�S(sa < b(Rntoperatortlt(RR((s!/usr/lib64/python2.7/fractions.pyt__lt__<scC s|j|tj�S(sa > b(RnRotgt(RR((s!/usr/lib64/python2.7/fractions.pyt__gt__@scC s|j|tj�S(sa <= b(RnRotle(RR((s!/usr/lib64/python2.7/fractions.pyt__le__DscC s|j|tj�S(sa >= b(RnRotge(RR((s!/usr/lib64/python2.7/fractions.pyt__ge__HscC s
|jdkS(sa != 0i(R(R((s!/usr/lib64/python2.7/fractions.pyt__nonzero__LscC s|jt|�ffS(N(t __class__R6(R#((s!/usr/lib64/python2.7/fractions.pyt
__reduce__RscC s,t|�tkr|S|j|j|j�S(N(R+RRyRR(R#((s!/usr/lib64/python2.7/fractions.pyt__copy__UscC s,t|�tkr|S|j|j|j�S(N(R+RRyRR(R#tmemo((s!/usr/lib64/python2.7/fractions.pyt__deepcopy__Zs(RRN(9R*t
__module__RTt __slots__RRtclassmethodRRRFtpropertyRRRGRHRURVRotaddt__add__t__radd__RWtsubt__sub__t__rsub__RXtmult__mul__t__rmul__RYttruedivt__truediv__t__rtruediv__R[t__div__t__rdiv__R\R]R^R_RaRbRcRdReRfRhRkRnRqRsRuRwRxRzR{R}(((s!/usr/lib64/python2.7/fractions.pyR,sRd7 k (RTt
__future__RRRR,R(Rotret__all__RRtcompiletVERBOSEt
IGNORECASERR(((s!/usr/lib64/python2.7/fractions.pyt<module>s