ok
Direktori : /usr/include/python2.7/ |
Current File : //usr/include/python2.7/memoryobject.h |
/* Memory view object. In Python this is available as "memoryview". */ #ifndef Py_MEMORYOBJECT_H #define Py_MEMORYOBJECT_H #ifdef __cplusplus extern "C" { #endif PyAPI_DATA(PyTypeObject) PyMemoryView_Type; #define PyMemoryView_Check(op) (Py_TYPE(op) == &PyMemoryView_Type) /* Get a pointer to the underlying Py_buffer of a memoryview object. */ #define PyMemoryView_GET_BUFFER(op) (&((PyMemoryViewObject *)(op))->view) /* Get a pointer to the PyObject from which originates a memoryview object. */ #define PyMemoryView_GET_BASE(op) (((PyMemoryViewObject *)(op))->view.obj) PyAPI_FUNC(PyObject *) PyMemoryView_GetContiguous(PyObject *base, int buffertype, char fort); /* Return a contiguous chunk of memory representing the buffer from an object in a memory view object. If a copy is made then the base object for the memory view will be a *new* bytes object. Otherwise, the base-object will be the object itself and no data-copying will be done. The buffertype argument can be PyBUF_READ, PyBUF_WRITE, PyBUF_SHADOW to determine whether the returned buffer should be READONLY, WRITABLE, or set to update the original buffer if a copy must be made. If buffertype is PyBUF_WRITE and the buffer is not contiguous an error will be raised. In this circumstance, the user can use PyBUF_SHADOW to ensure that a writable temporary contiguous buffer is returned. The contents of this contiguous buffer will be copied back into the original object after the memoryview object is deleted as long as the original object is writable and allows setting an exclusive write lock. If this is not allowed by the original object, then a BufferError is raised. If the object is multi-dimensional and if fortran is 'F', the first dimension of the underlying array will vary the fastest in the buffer. If fortran is 'C', then the last dimension will vary the fastest (C-style contiguous). If fortran is 'A', then it does not matter and you will get whatever the object decides is more efficient. A new reference is returned that must be DECREF'd when finished. */ PyAPI_FUNC(PyObject *) PyMemoryView_FromObject(PyObject *base); PyAPI_FUNC(PyObject *) PyMemoryView_FromBuffer(Py_buffer *info); /* create new if bufptr is NULL will be a new bytesobject in base */ /* The struct is declared here so that macros can work, but it shouldn't be considered public. Don't access those fields directly, use the macros and functions instead! */ typedef struct { PyObject_HEAD PyObject *base; Py_buffer view; } PyMemoryViewObject; #ifdef __cplusplus } #endif #endif /* !Py_MEMORYOBJECT_H */